Skip to main content

Phase behavior and rheological properties of lecithin/TTAOH/H2O mixtures

Abstract

The phase behavior, structures, and rheological properties of lecithin/tetradecyltrimethylammonium hydroxide (TTAOH)/water system were investigated by cryogenic transmission electron microscopy (cryo-TEM), polarization optical microscope, 1H and 31P nuclear magnetic resonance (NMR) spectra, surface tension, and rheological measurements. With the variation of mixing molar ratios and concentrations of lecithin and TTAOH, the system exhibits the phase transition from micelles (L1 phase) to vesicles (Lα phase) through a phase separation region. The rod-like micelles, uni- and multilamellar vesicles were determined by means of cryo-TEM observations. The surface tension and rheological measurements were performed to follow the phase transition. The samples of L1 phase region behave as Newton fluids at low concentration of lecithin. With the increase of the lecithin concentration, a shear-thinning L1 phase at the shearing rate 100 s−1 was found. The samples of \( {{\text{L}}_{\alpha }} \) phase region show viscoelastic properties of the typical vesicles. The interactions between lecithin and TTAOH were monitored by 1H and 31P NMR spectra. These results could contribute towards the understanding of the basic function of lecithin in biological membranes and membranous organelles.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Gunstone FD, Harwood JL, Padley FB (1994) The lipid book. Chapman and Hall, London

    Google Scholar 

  2. 2.

    Wendel A, Kirk R, Othmer D (1995) Encyclopedia of chemical technology. Wiley, New York

    Google Scholar 

  3. 3.

    Bergenståhl B, Fontell K (1983) Prog Colloid Polym Sci 68:48–52

    Article  Google Scholar 

  4. 4.

    Khan A, Jönsson B, Wennerström H (1985) J Phys Chem 89:5180–5184

    Article  CAS  Google Scholar 

  5. 5.

    Thurmond RL, Lindblom G, Brown MF (1991) Biophys J 60:728–732

    Article  CAS  Google Scholar 

  6. 6.

    Walter A, Vinson PK, Kaplon A, Talmon Y (1991) Biophys J 60:1315–1325

    Article  CAS  Google Scholar 

  7. 7.

    Edwards K, Almgren M (1992) Langmuir 8:824–832

    Article  CAS  Google Scholar 

  8. 8.

    Pedersen JS, Egelhaaf US, Schurtenberger P (1995) J Phys Chem 99:1299–1305

    Article  CAS  Google Scholar 

  9. 9.

    Li CY, Wiedmann ST (1996) J Phys Chem 100:18464–18473

    Article  CAS  Google Scholar 

  10. 10.

    Luk SA, Kaler WE, Lee SP (1997) Biochem 36:5633–5644

    Article  CAS  Google Scholar 

  11. 11.

    Cohen DE, Thurston GM, Chamberlin RA, Benedek GB, Carey MC (1998) Biochem 37:14798–14814

    Article  CAS  Google Scholar 

  12. 12.

    Ulmius J, Lindblom G, Wennerstroem H, Johansson LBA, Fontell K, Soederman O, Arvidson G (1982) Biochem 21:1553–1560

    Article  CAS  Google Scholar 

  13. 13.

    Sun C, Sano Y, Kashiwagi H, Ueno M (2002) Colloid Polym Sci 280:900–907

    Article  CAS  Google Scholar 

  14. 14.

    Leng J, Egelhaaf SU, Cates ME (2003) Biophys J 85:1624–1646

    Article  CAS  Google Scholar 

  15. 15.

    Subuddhi U, Mishra AK (2007) J Chem Sci 119:169–174

    Article  CAS  Google Scholar 

  16. 16.

    Singh J, Unlu Z, Ranganathan R (2008) J Phys Chem B 112:3997–4008

    Article  CAS  Google Scholar 

  17. 17.

    Arleth L, Bauer R, Øgendal LH, Egelhaaf SU, Schurtenberger P, Pedersen JS (2003) Langmuir 19:4096–4104

    Article  Google Scholar 

  18. 18.

    Tung SH, Huang YE, Raghavan SR (2006) J Am Chem Soc 128:5751–5756

    Article  CAS  Google Scholar 

  19. 19.

    Funasaki N, Ishikawa S, Neya S (2002) Langmuir 18:1786–1790

    Article  CAS  Google Scholar 

  20. 20.

    Montalvo G, Khan A (2002) Langmuir 18:8330–8339

    Article  CAS  Google Scholar 

  21. 21.

    Montalvo G, Valiente M, Khan A (2007) Langmuir 23:10518–10524

    Article  CAS  Google Scholar 

  22. 22.

    Takajoa Y, Matsukib H, Matsubaraa H, Tsuchiyac K, Aratonoa M, Yamanakaa M (2010) Colloids Surf B 76:571–576

    Article  Google Scholar 

  23. 23.

    Cui H, Hodgdon TK, Kaler EW, Abezgauz L, Danino D, Lubovsky M, Talmond Y, Pochan DJ (2007) Soft Matter 3:945–955

    Article  CAS  Google Scholar 

  24. 24.

    Gustafsson J, Orädd G, Lindblom G, Olsson U, Almgren M (1997) Langmuir 13:852–560

    Article  CAS  Google Scholar 

  25. 25.

    Dong S, Xu G, Hoffmann H (2008) J Phys Chem B 112:9371–9378

    Article  CAS  Google Scholar 

  26. 26.

    Chonn A, Cullis PR (1995) Curr Opin Biotechnol 6:698–708

    Article  CAS  Google Scholar 

  27. 27.

    Margalit R (1995) Crit Rev Ther Drug Carrier Syst 12:233–261

    CAS  Google Scholar 

  28. 28.

    Zierenberg O, Betzing H (1979) Drug Res 29:494–498

    CAS  Google Scholar 

  29. 29.

    Hao J, Liu W, Xu G, Zheng L (2003) Langmuir 19:10635–10640

    Article  CAS  Google Scholar 

  30. 30.

    Li H, Hao J (2008) J Phys Chem B 112:10497–10508

    Article  CAS  Google Scholar 

  31. 31.

    Pablo ML, Ruso JM, Prieto G, Sarmiento F (2002) J Chem Eng Data 47:1017–1021

    Article  Google Scholar 

  32. 32.

    Shchipunov YA (2001) Colloids Surf A 183:541–554

    Article  Google Scholar 

  33. 33.

    Cates ME, Candau SJ (1990) J Phys: Condens Matter 2:6869–6892

    Article  CAS  Google Scholar 

  34. 34.

    Hoffmann H, Thunig C, Schmiedel P, Munkert U (1994) Langmuir 10:3972–3981

    Article  CAS  Google Scholar 

  35. 35.

    Escalante J, Gradzielski M, Hoffmann H, Mortensen K (2000) Langmuir 16:8653–8663

    Article  CAS  Google Scholar 

  36. 36.

    Jung HT, Coldren B, Zasadzinski JA, Iampietro DJ, Kaler EW (2001) Proc Natl Acad Sci USA 98:1353–1357

    Article  CAS  Google Scholar 

  37. 37.

    Coldren BA, Warriner H, Zanten R, Zasadzinski JA, Sirota EB (2006) Langmuir 22:2474–2481

    Article  CAS  Google Scholar 

  38. 38.

    Israelachvili JN, Mitchell DJ, Ninham BW (1976) J Chem Soc. Faraday Trans 2(72):1525–1568

    Google Scholar 

  39. 39.

    Rydhag L, Gabrán T (1982) Chem Phys Lipids 30:309–324

    Article  CAS  Google Scholar 

  40. 40.

    Caria A, Khan A (1996) Langmuir 12:6282–6290

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the NSFC (21033005), National Basic Research Program of China (973 Program, 2009CB930103), and NFS of Shandong Province (2009ZRB01876). The authors thank Dr. Zhibo Li (Institute of Chemistry, Chinese Academy of Sciences) for the cryo-TEM measurements.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jingcheng Hao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 205 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhou, X., Dong, S. & Hao, J. Phase behavior and rheological properties of lecithin/TTAOH/H2O mixtures. Colloid Polym Sci 289, 1451–1457 (2011). https://doi.org/10.1007/s00396-011-2468-y

Download citation

Keywords

  • Phase behavior
  • Lecithin
  • Vesicles
  • 1H and 31P NMR spectra
  • Cryo-TEM