Skip to main content
Log in

Patterning nanocluster polystyrene brushes grafted from initiator cores on silicon surfaces by lithography processing

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this study, we formed grafted polystyrene (PS) brushes possessing nanocluster structures through atom transfer radical polymerization from initiator cores presented on Si surfaces that had been generated using reactive ion etching (RIE). We established the surface grafting polymerization kinetics of the nanoclustered PS chains on the Si surfaces to fit their experimentally determined thickness (ellipsometry) and number-average molecular weight (M n) of “free” PS (gel permeation chromatography). The propagation rate (k p) and active grafting species deactivation rate (k d) were obtained from reactions involving styrene concentrations from 0.2 to 2 M. We also used scanning electron microscopy to observe the morphologies of the PS grafted to the surfaces after various reaction times at various styrene concentrations. The PS brushes grafted onto the Si surfaces under styrene concentrations of 0.2, 0.5, 1, and 2 M exhibited clustered structures having cluster diameters of 12, 28, 42, and 45 nm, respectively; from these observations, we calculated the critical grafting density. In addition, we generated highly dense, well-defined patterns of PS on patterned Si(100) surfaces through the use of a very-large-scale integration process involving electron beam lithography and RIE. We employed the RIE system to generate a high density of reactive species at the bottom of the trenches for graft polymerization. After 21 h of grafting, AFM imaging revealed dense line patterns of nanoclustered PS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Stoykovich MP, Müller M, Kim SO, Solak HH, Edwards EW, de Pablo JJ, Nealey PF (2005) Science 308:1442–1446

    Article  CAS  Google Scholar 

  2. Yu CJ, Gao H, Yu HY, Jiang HQ, Cheng GJ (2009) Appl Phys Lett 95:091108

    Article  Google Scholar 

  3. Chen J-K, Li J-Y (2010) Appl Phys Lett 97:063701

    Article  Google Scholar 

  4. Ozbay E (2006) Science 311:189–193

    Article  CAS  Google Scholar 

  5. Chen J-K, Li J-Y (2010) Sens Actuators B 150:314–320

    Article  Google Scholar 

  6. Chen J-K, Zhuang A-L (2010) J Phys Chem C 114:11801–11809

    Article  CAS  Google Scholar 

  7. Ber S, Kose GT, Hasirci V (2005) Biomaterials 26:1977–1986

    Article  CAS  Google Scholar 

  8. Chen JK, Chan CH, Chang FC (2008) Appl Phys Lett 92:053108

    Article  Google Scholar 

  9. Gang Lu, Li Yi-Min, Chun-Hua Lu, Zhong-Zi Xu (2010) Colloid Polym Sci 288:1445–1455

    Article  Google Scholar 

  10. Chan CH, Chen JK, Chang FC (2008) Sens Actuators B 13:327–332

    Article  Google Scholar 

  11. Chen JK, Hsieh CY, Huang CF, Li PM, Kuo SW, Chang FC (2008) Macromolecules 41:8729–8736

    Article  CAS  Google Scholar 

  12. Kuckling D (2009) Colloid Polym Sci 287:881–891

    Article  CAS  Google Scholar 

  13. Mahajan N, Lu R, Wu S-T, Fang J (2005) Langmuir 21:3132–3135

    Article  CAS  Google Scholar 

  14. Kim P, Lee SE, Jung HS, Lee HY, Kawai T, Suh K (2006) Lab Chip 6:54–59

    Article  CAS  Google Scholar 

  15. Paul KE, Prentiss M, Whitesides GM (2003) Adv Funct Mater 13:259–263

    Article  CAS  Google Scholar 

  16. Husemann M, Mecerreyes D, Hawker CJ, Hedrick JL, Shah R, Abbott NL (1999) Angew Chem Int Ed 38:647–649

    Article  CAS  Google Scholar 

  17. Ahn SJ, Kaholek M, Lee W-K, LaMattina B, LaBean TH, Zauscher S (2004) Adv Mater 16:2141–2145

    Article  CAS  Google Scholar 

  18. Kaholek M, Lee W-K, LaMattina B, Caster KC, Zauscher S (2004) Nano Lett 4:373–378

    Article  CAS  Google Scholar 

  19. Werne TAV, Germack DS, Hagberg EC, Sheares VV, Hawker CJ, Carter KRJ (2003) Am Chem Soc 125:3831–3838

    Article  Google Scholar 

  20. Xu FJ, Zhong SP, Yung LYL, Kang ET, Neoh KG (2004) Biomacromolecules 5:2392–2403

    Article  CAS  Google Scholar 

  21. Kizhakkedathu JN, Norris-Jones R, Brooks DE (2004) Macromolecules 37:734–743

    Article  CAS  Google Scholar 

  22. Ma H, Hyun J, Stiller P, Chilkoti A (2004) Adv Mater 16:338–341

    Article  CAS  Google Scholar 

  23. Iwata R, Suk-In P, Hoven VP, Takahara A, Akiyoshi K, Iwasaki Y (2004) Biomacromolecules 5:2308–2314

    Article  CAS  Google Scholar 

  24. Anderson DG, Burdick JA, Langer R (2004) Science 305:1923–1924

    Article  CAS  Google Scholar 

  25. Husemann M, Morrison M, Benoit D, Frommer J, Mate CM, Hinsberg WD, Hedrick JL, Hawker CJJ (2000) Am Chem Soc 122:1844–1845

    Article  CAS  Google Scholar 

  26. Zhou F, Jiang L, Liu W, Xue Q (2004) Macromol Rapid Commun 25:1979–1983

    Article  CAS  Google Scholar 

  27. Chen JK, Chen ZY, Lin HC, Hong PD, Chang FC (2009) ACS Appl Mater Interfaces 1:1525–1532

    Article  CAS  Google Scholar 

  28. Chen J-K, Hsieh C-Y, Huang C-F, Li P-MJ (2009) Colloid Interface Sci 338:428–434

    Article  CAS  Google Scholar 

  29. Shi YJ, Li XM, Tong L, Toukabri R, Eustergerling B (2008) Phys Chem Chem Phys 10:2543–2551

    Article  CAS  Google Scholar 

  30. Chen ZY, Chen JK (2011) Colloid Polym Sci 289:433–445

    Article  CAS  Google Scholar 

  31. Chen J-K, Chen T-YJ (2011) Colloid Interface Sci 355:359–367

    Article  CAS  Google Scholar 

  32. Wasserman SR, Tao Y-T, Whitesides GM (1989) Langmuir 5:1074–1087

    Article  CAS  Google Scholar 

  33. Watanabe H, Kilbey SM II, Tirrell M (2000) Macromolecules 33:9146–9151

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We thank the National Nano Device Laboratory for financially supporting the electron beam lithography equipment used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jem-Kun Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, JK., Zhuang, AL. Patterning nanocluster polystyrene brushes grafted from initiator cores on silicon surfaces by lithography processing. Colloid Polym Sci 289, 1283–1294 (2011). https://doi.org/10.1007/s00396-011-2450-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-011-2450-8

Keywords

Navigation