Skip to main content
Log in

Synthesis and electrorheological characteristics of sea urchin-like TiO2 hollow spheres

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

TiO2 hollow microspheres with sea urchin-like hierarchical architectures were synthesized by a simple hydrothermal method. The as-synthesized hollow microspheres with hierarchical architectures consisting of many rhombic building units exhibit high specific surface area. Electrorheological (ER) properties of hierarchical hollow TiO2-based suspension were investigated under steady and oscillatory shear. The hollow TiO2-based suspensions show much higher yield stress and elasticity than pure TiO2 suspension at the same electric field strength. This phenomenon was elucidated well in view of their dielectric spectra analysis. The sea urchin-like architectures result in stronger interfacial polarization of hollow TiO2 suspension upon an electric field, showing higher ER activity. Also, hollow interiors of TiO2 particles increase the long-term stability of suspensions and further merit the ER effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wen W, Huang X, Yang S, Lu K, Shen P (2003) Nat Mater 2:727

    Article  CAS  Google Scholar 

  2. Block H, Kelly JP (1988) J Phys D Appl Phys 21:1661

    Article  CAS  Google Scholar 

  3. Hao T (2001) Adv Mater 13:1847

    Article  CAS  Google Scholar 

  4. Whitesides GM, Grzybowski B (2002) Science 295:2418

    Article  CAS  Google Scholar 

  5. Shen R, Wang X, Lu Y, Wang D, Sun G, Cao Z, Lu K (2009) Adv Mater 21:4631

    Article  CAS  Google Scholar 

  6. Yin J, Zhao X, Xia X, Xiang L, Qiao Y (2008) Polymer 49:4413

    Article  CAS  Google Scholar 

  7. Hong JY, Kwon E, Jang J (2009) Soft Matter 5:951

    Article  CAS  Google Scholar 

  8. Yin J, Xia X, Xiang L, Zhao X (2010) J Mater Chem 20:7096

    Article  CAS  Google Scholar 

  9. Zhang WL, Park BJ, Choi HJ (2010) Chem Commun 46:5596

    Article  CAS  Google Scholar 

  10. Hong JH, Jang J (2010) Soft Matter 6:4669

    Article  CAS  Google Scholar 

  11. Choi HJ, Jhon MS (2009) Soft Matter 5:1562

    Article  CAS  Google Scholar 

  12. Cao JG, Shen M, Zhou LW (2006) J Solid State Chem 179:1565

    Article  CAS  Google Scholar 

  13. Liu F, Xu G, Wu J, Cheng Y, Guo J, Cui P (2010) Colloid Polym Sci 288:1739

    Article  CAS  Google Scholar 

  14. Yin J, Zhao X (2004) Chem Mater 16:321

    Article  CAS  Google Scholar 

  15. Yin J, Zhao X (2006) Nanotechnology 17:192

    Article  CAS  Google Scholar 

  16. Yin J, Zhao X, Xiang L, Xia X, Zhang Z (2009) Soft Matter 5:4687

    Article  CAS  Google Scholar 

  17. Li X, Xiong Y, Li Z, Xie Y (2006) Inorg Chem 45:3493

    Article  CAS  Google Scholar 

  18. Cho MS, Cho YH, Choi HJ, Jhon MS (2003) Langmuir 19:5875

    Article  CAS  Google Scholar 

  19. Cheng Q, Pavlinek V, He Y, Li C, Saha P (2009) Colloid Polym Sci 287:435

    Article  CAS  Google Scholar 

  20. Klingenberg DJ, Van Swol F, Zukoski CF (1991) J Chem Phys 94:6170

    Article  CAS  Google Scholar 

  21. Tsuda K, Takeda Y, Ogura H, Otsubo Y (2007) Colloid Surf A: Physicochem Eng Asp 299:262

    Article  CAS  Google Scholar 

  22. Wang B, Zhao X (2005) Adv Mater 15:1815

    Article  CAS  Google Scholar 

  23. Hiamtup P, Sirivat A, Jamieson AM (2006) J Colloid Interface Sci 295:270

    Article  CAS  Google Scholar 

  24. Cho MS, Choi HJ, Ahn WS (2004) Langmuir 20:202

    Article  CAS  Google Scholar 

  25. Block H, Rattay P (1995) In: Havelka KO, Filisko FE (eds) Progress in electrorheology. Plenum, New York, p 19

    Google Scholar 

  26. Ikazaki F, Kawai A, Uchida K, Kawakami T, Edamura K, Sakura K, Anzai H, Asako Y (1998) J Phys D Appl Phys 31:336

    Article  CAS  Google Scholar 

  27. Hao T, Kawai A, Ikazaki F (1998) Langmuir 14:1256

    Article  CAS  Google Scholar 

  28. Hao T, Kawai A, Ikazaki F (1999) Langmuir 15:918

    Article  CAS  Google Scholar 

  29. Kim SG, Lim JY, Sung JH, Choi HJ, Seo Y (2007) Polymer 48:6622

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (20925621), the Special Projects for Nanotechnology of Shanghai (1052 nm02300, 0952 nm02000, and 0952 nm02100), the Shanghai Pujiang Program (09PJ1403200), the Program of Shanghai Subject Chief Scientist (08XD1401500), the Special Projects for Key Laboratories in Shanghai (10DZ2211100), and the Fundamental Research Funds for the Central Universities (WD1013014). The authors also wish to thank the financial support of the Ministry of Education, Youth, and Sports of the Czech Republic (MSM 7088352101) and Grant Agency of the Czech Republic (202/09/1626).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunzhong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, Q., Pavlinek, V., He, Y. et al. Synthesis and electrorheological characteristics of sea urchin-like TiO2 hollow spheres. Colloid Polym Sci 289, 799–805 (2011). https://doi.org/10.1007/s00396-011-2398-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-011-2398-8

Keywords

Navigation