Skip to main content
Log in

Development and flow evaluation of electro-rheological nano-suspensions

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

An attempt has been made to develop a candidate for electro-rheological (ER) nano-suspensions based on anatase titanium dioxide with a particle diameter around 300 nm. The micro-gap flow behavior and microstructure were evaluated for a suspension with a particle volume fraction of 8.8 vol.%. The ER effect was investigated for the nano-suspension. The effect of shearing time on the ER responses was also investigated. The ER effect was discussed in comparison to the effect previously reported for the nano-suspension based on rutile titanium dioxide with a particle diameter around 15 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Winslow WM (1949) Induced fibration of suspensions. J Appl Phys 20:1137

    Article  CAS  Google Scholar 

  2. Hosseini-Sianaki A, Bullough WA, Firoozian R, Makin J, Tozer RC (1992) Experimental measurements of the dynamic torque response of an electrorheological fluid in the shear mode. Int J Mod Phys B 6:2667

    Article  CAS  Google Scholar 

  3. Tanaka K, Sahashi A, Akiyama R, Koyama K (1995) Scaling behavior of response times of electrorheological suspensions with cation exchange resin particles. Phys Rev E 52:R3325

    Article  CAS  Google Scholar 

  4. Nakano M, Koyama K (eds) (1998) Proc. of 6th Int. Conf. on ER Fluids, MR suspensions and their applications. World Scientific, Singapore

  5. Furusho J, Sakaguchi M (1999) New actuators using ER fluid and their applications to force display devices in virtual reality and medical treatments. Int J Mod Phys B 13:2151

    Article  Google Scholar 

  6. Nakano M, Minagawa S, Hagino K (1999) PWM flow rate control of ER valve and its application to ER actuator control. Int J Mod Phys B 13:2168

    Article  Google Scholar 

  7. Marshall L, Zukoski CF, Goodwin JW (1989) Effects of electric fields on the rheology of non-aqueous concentrated suspensions. J Chem Soc Faraday Trans 1(85):2785

    Google Scholar 

  8. Klingenberg DJ, van Swol F, Zukoski CF (1989) Dynamic simulation of electrorheological suspensions. J Chem Phys 91:7888

    Article  CAS  Google Scholar 

  9. Klingenberg DJ, Zukoski CF (1990) Studies on the steady-shear behavior of electrorheological suspensions. Langmuir 6:15

    Article  CAS  Google Scholar 

  10. See H, Doi M (1991) Aggregation kinetics in electro-rheological fluids. J Phys Soc Jpn 60:2778

    Article  CAS  Google Scholar 

  11. Tao R, Sun JM (1991) Three-dimensional structure of induced electrorheological solid. Phys Rev Lett 67:398

    Article  Google Scholar 

  12. Takimoto J (1992) Computer simulation of model electrorheological fluids. In: Tao R (ed) Proc. of 3rd Int. Conf. on ER Fluids. World Scientific, Singapore, p. 53

    Google Scholar 

  13. Henley S, Filisko FE (1999) Flow profiles of electrorheological suspensions. J Rheol 43:1323

    Article  CAS  Google Scholar 

  14. Parthasarathy M, Klingenberg DJ (1996) Electrorheology. Mater Sci Eng R17:57

    CAS  Google Scholar 

  15. Block H, Kelly JP (1988) Electrorheology. J Phys D 21:1661

    Article  CAS  Google Scholar 

  16. Negita K, Ohsawa Y (1995) Electrorheological resonance observed in a colloidal suspension. Phys Rev E 52:1934

    Article  CAS  Google Scholar 

  17. Misono Y, Negita K (2004) Shear-induced particle rotation and its effect on electrorheological and dielectric properties in cellulose suspension. Phys Rev E 70:061412-1

    Article  Google Scholar 

  18. Yin J, Zhao X (2001) Temperature effect of rare earth-doped TiO2 electrorheological fluids. J Phys D 34:2063

    Article  CAS  Google Scholar 

  19. Wen W, Huang X, Yang S, Lu K, Sheng P (2003) The giant electrorheological effect in suspensions of nanoparticles. Nat Mater 2:727

    Article  CAS  Google Scholar 

  20. Tanaka K, Akiyama R (2009) Electrically induced microstructures in micro- and nano-suspensions and related physical properties. Polym J 41:1019

    Article  CAS  Google Scholar 

  21. Tanaka K, Wakayasu T, Kubono A, Akiyama R (2004) Electro-rheological behavior of suspension composed of titanium dioxide nano-particles. Sens Actuators A 112:376

    Article  Google Scholar 

  22. Tanaka K, Nakahori H, Katayama K, Akiyama R (2007) Linear viscoelastic properties of electro-rheological nano-suspension confined to narrow gap between electrodes. Colloid Polym Sci 285:1201

    Article  CAS  Google Scholar 

  23. Nakano M, Yamamura S, Keta R, Tanaka K (2006) Rheological properties and flow behavior of nano-particle ER fluid in shear flow mode. Proc. of Mechanical Engineering Congress, 2006 Japan, vol. 2, p. 25

  24. Nakano M (2009) Micro-gap flow behavior of nano-/micro-particle ER suspensions and their application to Braille display system. Jpn J Multiphase Flow 23:135

    Google Scholar 

  25. Tanaka K, Sezaki N, Nakahori H, Akiyama R (2009) Apparent yield stresses and microstructures of electro-rheological nano-suspensions under no external electric fields. Nihon Reoroji Gakkaishi (J Soc Rheol Jpn) 37:17

    Article  CAS  Google Scholar 

  26. Tanaka K, Nakagawa N, Akiyama R (2010) Flow behavior and microstructure developed between parallel plate electrodes for electro-rheological nano-suspensions under no external electric fields. Nihon Reoroji Gakkaishi (J Soc Rheol Jpn) 38:93

    Article  CAS  Google Scholar 

  27. Matsumoto T, Hitomi C, Onogi S (1975) Rheological properties of disperse systems of spherical particles in polystyrene solution at long time-scales. Trans Soc Rheol 19:541

    Article  CAS  Google Scholar 

  28. Oehme F (1964) Die dielektrischen Eigenschaften chromatographischer Adsorptionsmittel. Chem Ztg 88:657

    CAS  Google Scholar 

  29. Weast RC (ed) (1984) CRC handbook of chemistry and physics, 64th edn. CRC Press, Boca Raton

    Google Scholar 

  30. Parker RA (1961) Static dielectric constant of rutile (TiO2), 1.6–1060°K. Phys Rev 124:1719

    Article  CAS  Google Scholar 

  31. Israelachvili JN (1985) Intermolecular and surface forces, Ch. 11. Academic Press, London

    Google Scholar 

  32. Verwey EJW, Overbeek JThG (1999) Theory of the stability of lyophobic colloids, Ch. 12. Dover, Toronto

    Google Scholar 

  33. Von Smoluchowski M (1916) Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen. Physik Z 17:585

    Google Scholar 

  34. Barringer EA, Bowen HK (1985) High-purity, monodisperse TiO2 powders by hydrolysis of titanium tetraethoxide 2. Langmuir 1:420

    Article  CAS  Google Scholar 

  35. Larson I, Drummond CJ, Chan DYC, Grieser F (1993) Direct force measurements between TiO2 surfaces. J Am Chem Soc 115:11885

    Article  CAS  Google Scholar 

  36. Davis LC (1993) The metal-particle/insulating oil system. J Appl Phys 73:680

    Article  CAS  Google Scholar 

  37. See H, Tamura H, Doi M (1993) The role of water capillary forces in electro-rheological fluids. J Phys D 26:746

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was partially supported by the Cooperative Research Program of the Institute of Fluid Science, Tohoku University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsufumi Tanaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, K., Hira, T., Fukui, R. et al. Development and flow evaluation of electro-rheological nano-suspensions. Colloid Polym Sci 289, 855–862 (2011). https://doi.org/10.1007/s00396-011-2396-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-011-2396-x

Keywords

Navigation