Skip to main content
Log in

Complexation behaviour of cellulose derivative/surfactant mixtures investigated by nonlinear enhanced Rayleigh scattering

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Complexation behaviour of cellulose derivative/surfactant mixtures in aqueous solution was investigated by nonlinear enhanced Rayleigh scattering (NERS). The NERS spectra of polymer solutions, including second-order scattering, third-order scattering, frequency doubling scattering and triplet frequency scattering were created using by spectrofluorometer. The results indicated that NERS intensity of cellulose derivative/surfactant systems changes differently with continuing addition of surfactant due to the complexation between cellulose derivative and surfactant. The critical micelle concentration of cellulose derivatives/surfactants system is easy to obtain. The change of NERS intensity reveals the complexation behaviour of cellulose derivative/surfactant and the aggregation state of polymer chains in evidence. Therefore, NERS had been successfully developed to study complexation behaviour of cellulose derivative/surfactant mixtures in solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Holmberg K, Jöensson B, Kronberg B, Lindman B (2002) Surfactants and polymers in aqueous solution. Wiley, New York

    Book  Google Scholar 

  2. Nilsson S, Thuresson K, Lindman B, Nyström B (2000) Macromolecules 33:9641–9649

    Article  CAS  Google Scholar 

  3. Evertsson H, Nilsson S, Welch CJ, Sundelöf L-O (1998) Langmuir 14:6403–6408

    Article  CAS  Google Scholar 

  4. Nyström B, Thuresson K, Lindman B (1995) Langmuir 11:1994–2002

    Article  Google Scholar 

  5. Zhou SQ, Xu C, Wang J, Golas P, Batteas J (2004) Langmuir 20:8482–8489

    Article  CAS  Google Scholar 

  6. Schulz L, Seger B, Burchard W (2000) Macromol Chem Phys 201:2008–2022

    Article  CAS  Google Scholar 

  7. Winnik FM, Winnik MA, Tazuke S (1987) J Phys Chem 91:594–597

    Article  CAS  Google Scholar 

  8. Wittgren B, Stefansson M, Porsch B (2005) J Chromatogr A 1082:166–175

    Article  CAS  Google Scholar 

  9. Vasile C, Bumbu GG, Dumitriu RP, Staikos G (2004) Eur Polym J 40:1209–1215

    Article  CAS  Google Scholar 

  10. Trabelsi S, Raspaud E, Langevin D (2007) Langmuir 23:10053–10062

    Article  CAS  Google Scholar 

  11. Drummond CJ, Albers S, Furlong DN (1992) Colloid Surf 62:75–85

    Article  CAS  Google Scholar 

  12. Goddard ED (1986) Colloid Surf 19:255–300

    Article  CAS  Google Scholar 

  13. Hormnirun P, Sirivat A, Jamieson AM (2000) Polymer 41:2127–2132

    Article  CAS  Google Scholar 

  14. Kjøniksen AL, Knudsen KD, Nyström B (2005) Eur Polym J 41:1954–1964

    Article  Google Scholar 

  15. Boscher Y, Lafuma R, Ouivoron C (1983) Polym Bull 9:533–536

    Article  CAS  Google Scholar 

  16. Lu XH, Hu ZB, Gao J (2000) Macromolecules 33:8698–8702

    Article  CAS  Google Scholar 

  17. Winnik FM (1989) J Phys Chem 93:7452–1451

    Article  CAS  Google Scholar 

  18. Panmai S, Prud'homme RK, Peiffer DG, Jockusch S, Turro NJ (2002) Langmuir 18:3860–3864

    Article  CAS  Google Scholar 

  19. Evertsson H, Nilsson S (1997) Macromolecules 30:2377–2385

    Article  CAS  Google Scholar 

  20. Ridell A, Evertsson H, Nilsson S (2002) J Colloid Interf Sci 247:381–388

    Article  CAS  Google Scholar 

  21. Khutoryanskiy VV, Dubolazov AV, Nurkeeva ZS, Mun GA (2004) Langmuir 20:3785–3790

    Article  CAS  Google Scholar 

  22. Luo HQ, Li NB, Liu SP (2006) Biosens Bioelectron 21:1186–1194

    Article  CAS  Google Scholar 

  23. Huang CZ, Li KA, Tong SY (1997) Anal Chem 69:514–520

    Article  CAS  Google Scholar 

  24. Liu SP, Luo HQ, Li NB, Liu ZF, Zheng WX (2001) Anal Chem 73:3907–3914

    Article  CAS  Google Scholar 

  25. Li YB, Chen XD, Zhang MQ, Luo WA, Yang J, Zhu FM (2008) Macromolecules 41:4873–4880

    Article  CAS  Google Scholar 

  26. Yang J, Chen XD, Fu RW, Luo WA, Li YB, Zhang MQ (2010) Phys Chem Chem Phys 12:2238–2245

    Article  CAS  Google Scholar 

  27. Li YB, Li HX, Sun YT, Chen XD, Zhu YM (2010) Appl Spectrosc 64:682–686

    Article  CAS  Google Scholar 

  28. Jiang ZL, Liu QY, Liu SP (2002) Spectrochim Acta A 58:2759–2764

    Google Scholar 

  29. Liu ZW, Liu SP, Wang L, Peng JJ, He YQ (2009) Spectrochim Acta A 74:36–41

    Article  Google Scholar 

  30. Luo HQ, Liu SP, Li NB, Liu ZF (2002) Anal Chim Acta 468:275–286

    Article  CAS  Google Scholar 

  31. Pasternack RF, Collings PJ (1995) Science 269:935–939

    Article  CAS  Google Scholar 

  32. Parkash J, Robblee JH, Agnew J, Gibbs E, Collings P, Pasternack RF, d Paula JC (1998) Biophys J 74:2089–2099

    Article  CAS  Google Scholar 

  33. Kosik K, Wilk E, Geissler E, László K (2008) J Phys Chem B 112:1065–1070

    Article  CAS  Google Scholar 

  34. Nasimova I, Karino T, Okabe S, Nagao M, Shibayama M (2004) Macromolecules 37:8721–8729

    Article  CAS  Google Scholar 

  35. Collings PJ, Gibbs EJ, Starr TE, Vafek O, Yee C, Pomerance LA, Pasternack RF (1999) J Phys Chem B 103:8474–8481

    Article  CAS  Google Scholar 

  36. Jiang ZL, Liu SP, Chen S (2002) Spectrochim Acta A 58:3121–3126

    Article  Google Scholar 

  37. Liu SP, He YQ, Liu ZF, Kong L, Lu QM (2007) Anal Chim Acta 598:304–311

    Article  CAS  Google Scholar 

  38. Ma Y, Li NB, Luo HQ (2009) Spectrochim Acta A 73:747–751

    Article  Google Scholar 

  39. Fu SH, Liu ZF, Liu SP, Yi A (2008) Talanta 75:528–535

    Article  CAS  Google Scholar 

  40. He YQ, Liu SP, Kong L, Liu ZF (2005) Spectrochim Acta A 61:2861–2866

    Article  Google Scholar 

  41. Vance FW, Lemon BI, Hupp JT (1998) J Phys Chem B 102:10091–10093

    Article  CAS  Google Scholar 

  42. Liu SP, Yang Z, Liu ZF, Kong L (2006) Anal Biochem 353:108–116

    Article  CAS  Google Scholar 

  43. Jones MN (1967) J Colloid Interf Sci 23:36–42

    Article  CAS  Google Scholar 

  44. Li NB, Luo HQ, Liu SP (2004) Spectrochim Acta A 60:1811–1815

    Article  Google Scholar 

  45. Panmai S, Prud’homme RK, Peiffer DG (1999) Colloid Surf A 147:3–15

    Article  CAS  Google Scholar 

  46. Schwuger MJ (1971) Colloid Polym Sci 246:626–635

    CAS  Google Scholar 

  47. Safran SA, Clark NA (1987) Physics of complex and supermolecular fluids. Wiley, New York

    Google Scholar 

  48. Kjøniksen AL, Nyström B, Lindman B (1999) Colloid Surf A 149:347–354

    Article  Google Scholar 

  49. Rosen MJ (1989) Surfactants and interfacial phenomena. Wiley, New York

    Google Scholar 

  50. Hoff E, Nyström B, Lindman B (2001) Langmuir 17:28–34

    Article  CAS  Google Scholar 

  51. Werawatganone P, Wurster DE (2007) J Pharm Sci 96:448–458

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The work was financially supported by the program of the Postdoctoral Foundation of Shanghai University and National Natural Science Foundation of China (grant no. 50673104).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunbo Li or Xudong Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Chen, X., Zhang, X. et al. Complexation behaviour of cellulose derivative/surfactant mixtures investigated by nonlinear enhanced Rayleigh scattering. Colloid Polym Sci 289, 767–774 (2011). https://doi.org/10.1007/s00396-011-2390-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-011-2390-3

Keywords

Navigation