Skip to main content
Log in

Absolute rate of turbulent coagulation from turbidity measurement

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Turbidity method has been applied to assess colloid stability. While the method is simple and easy, it is not straightforward in evaluating absolute coagulation rates of colloidal particles. That is, the method requires the evaluation of the extinction cross section of doublets. Recently, the turbidity measurement has been successfully utilized to evaluate the absolute Brownian coagulation rate constant with the T-matrix method, which calculates the extinction cross section of doublets at arbitral size range. The present work was performed to extend the applicability of the method to turbulent coagulation. To this end, we measured the turbidity change of coagulating latex suspensions in a turbulent flow. The measurement was performed as a function of particle size. From the turbidity vs. time relationship, we evaluated turbulent coagulation rate constant using the T-matrix method. Obtained values of the constants agreed well with theoretical ones, demonstrating the usefulness of turbidity method for turbulent coagulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Elimelech M, Gregory J, Jia X, Williams RA (1995) Particle deposition and aggregation: measurement, modeling and simulation. Butterworth-Heinemann, Oxford

    Google Scholar 

  2. Ohshima H, Furusawa K (eds) (1998) Electrical phenomena at interfaces, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  3. Van de Ven TGM, Mason SG (1977) Colloid Polym Sci 255:468–479

    Article  Google Scholar 

  4. Sato D, Kobayashi M, Adachi Y (2004) J Colloid Interface Sci 272:345–351

    Article  CAS  Google Scholar 

  5. Ottewill RH, Shaw JN (1966) Discuss Faraday Soc 42:154–163

    Article  Google Scholar 

  6. Fukasawa T, Adachi Y (2006) J Colloid Interface Sci 304:115–118

    Article  CAS  Google Scholar 

  7. Sato D, Kobayashi M, Adachi Y (2005) Colloids Surf A 266:150–154

    Article  CAS  Google Scholar 

  8. Higashitani K, Yamauchi K, Matsuno Y, Hosokawa G (1983) J Chem Eng Jpn 16:299–304

    Article  CAS  Google Scholar 

  9. Adachi Y, Matsumoto T, Cohen Stuart MA (2002) Colloids Surf A 207:253–261

    Article  CAS  Google Scholar 

  10. Adachi Y, Cohen Stuart MA, Fokkink R (1994) J Colloid Interface Sci 165:310–317

    Article  CAS  Google Scholar 

  11. Galletto P, Lin W, Mishchenko MI, Borkovec M (2005) J Chem Phys 123:064709-1–064709-8

    Article  Google Scholar 

  12. Killmann E, Adolph H (1995) Colloid Polym Sci 273(11):1071–1079

    Article  CAS  Google Scholar 

  13. Kobayashi M, Skarba M, Galletto P, Cakara D, Borkovec M (2005) J Colloid Interface Sci 292:139–147

    Article  CAS  Google Scholar 

  14. Lichtenbelt LWTh, MC RHJ, Wiersema PH (1974) J Colloid Interface Sci 46:522–527

    Article  CAS  Google Scholar 

  15. Sun Z, Liu J, Xu S (2006) Langmuir 22:4946–4951

    Article  CAS  Google Scholar 

  16. Xun S, Liu J, Sun Z (2006) J Colloid Interface Sci 304:107–114

    Article  Google Scholar 

  17. Van Dieman AJG, Stein HN (1983) J Colloid Interface Sci 96:150–161

    Article  Google Scholar 

  18. Penners NHG, Koopal LK (1987) Colloids Surf 28:67–83

    Article  CAS  Google Scholar 

  19. Mishchenko MI (1991) Light scattering by randomly oriented axially symmetric particles. J Opt Soc Am A 8:871–882

    Article  CAS  Google Scholar 

  20. Mackowski DW (1994) J Opt Soc Am A 11:2851–2861

    Article  Google Scholar 

  21. Mishchenko MI, Mackowski DW (1994) Opt Lett 19:1604–1606

    Article  CAS  Google Scholar 

  22. Mishchenko MI, Mackowski DW, Travis LD (1995) Appl Opt 34:4589–4599

    Article  CAS  Google Scholar 

  23. Mishchenko MI, Mackowski DW (1996) J Quant Spectrosc Radiat Transfer 55:683–694

    Article  CAS  Google Scholar 

  24. Mishchenko MI (1996) Opt Lett 21:623–625

    Article  CAS  Google Scholar 

  25. Adachi Y (1995) Adv Colloid Interface Sci 56:1–31

    Article  CAS  Google Scholar 

  26. Saffman PG, Turner JS (1956) J Fluid Mech 1:16–30

    Article  Google Scholar 

  27. Kobayashi M, Maekita T, Adachi Y, Sasaki H (2004) Int J Miner Process 73:177–181

    Article  CAS  Google Scholar 

  28. Lide DR (ed) (2001) CRC handbook of chemistry and physics, 82nd edn. CRC Press, Boca Raton

    Google Scholar 

  29. Kobayashi M, Adachi Y, Ooi S (1999) Langmuir 15:4351–4356

    Article  CAS  Google Scholar 

  30. Kobayashi M (2008) J Appl Mech JSCE 11:517–523

    Google Scholar 

  31. Israelachvili JN (1992) Intermolecular and surface forces, 2nd edn. Academic, London

    Google Scholar 

  32. Vakarelski IU, Ishimura K, Higashitani K (2000) J Colloid Interface Sci 227:111–118

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motoyoshi Kobayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, M., Ishibashi, D. Absolute rate of turbulent coagulation from turbidity measurement. Colloid Polym Sci 289, 831–836 (2011). https://doi.org/10.1007/s00396-011-2388-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-011-2388-x

Keywords

Navigation