Effect of cross-linker density of P(NIPAM-co-AAc) microgels at solid surfaces on the swelling/shrinking behaviour and the Young’s modulus

Abstract

The effect of the amount of cross-linker in poly(N-isopropylacrylamide-co-acrylic acid) microgel particles on the swelling behaviour and their elasticity is studied. The distribution of the stiffness through the particle is also investigated. Therefore, the swelling ratio obtained from dynamic light scattering measurements in aqueous solutions is compared with the one after adsorption at polycation-coated silicon wafers. The studies of the swelling behaviour at the surface are carried out with scanning force microscopy (SFM) against liquid. The Young’s modulus is determined by indentation experiments with an SFM. With increasing amount of cross-linker, the ability to shrink as well as the shift in the lower critical solution temperature and in particle size (hysteresis) during the heating and cooling processes decreases. In addition, the particles at the surface preserve their height/width ratio at high amount of cross-linker, while at low amounts the shrinking and swelling mainly takes place with respect to changes in height. The particles show their highest Young’s modulus in the centre of the particles and become stiffer with increasing the amount of cross-linker and the temperature.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Kratz K, Eimer W (1998) Ber Bunsenges Phys Chem 102(6):848

    CAS  Google Scholar 

  2. 2.

    Sierra-Martin B, Romero-Cano MS, Fernandez-Nieves A, Fernandez-Barbero A (2006) Langmuir 22(8):3586

    Article  CAS  Google Scholar 

  3. 3.

    Hoare T, Pelton R (2004) Macromolecules 37:2544

    Article  CAS  Google Scholar 

  4. 4.

    Karg M, Pastoriza-Santos I, Rodriguez-Gonzalez B, von Klitzing R, Wellert S, Hellweg T (2008) Langmuir 24(12):6300. doi:10.1021/la702996p. URL: http://pubs.acs.org/doi/abs/10.1021/la702996p. PMID: 18489184

    Article  CAS  Google Scholar 

  5. 5.

    Meng Z, Cho JK, Breedveid V, Lyon LA (2009) J Phys Chem B 113:4590

    Article  CAS  Google Scholar 

  6. 6.

    Hoare T, Perlton R (2008) Langmuir 24:1005

    Article  CAS  Google Scholar 

  7. 7.

    Yin Z, Zhang J, Jiang LP, Zhu JJ (2009) J Phys Chem C 113:16104

    Article  CAS  Google Scholar 

  8. 8.

    Ngai T, Behrens SH, Auweter H (2005) Chem Commun 3:331–333

    Article  Google Scholar 

  9. 9.

    Kim J, Serpe MJ, Lyon LA (2004) J Am Chem Soc 126:9512

    Article  CAS  Google Scholar 

  10. 10.

    Kim J, Nayak S, Lyon LA (2005) J Am Chem Soc 127:9588

    Article  CAS  Google Scholar 

  11. 11.

    Daly E, Saunders BR (2000) Phys Chem Chem Phys 2:3187

    Article  CAS  Google Scholar 

  12. 12.

    Daly E, Saunders BR (2000) Langmuir 16:5546

    Article  CAS  Google Scholar 

  13. 13.

    Hellweg T (2003) Properties of NIPAM-based intelligent microgel particles. Kluwer, Boston

    Google Scholar 

  14. 14.

    Larsson A, Kuckling D, Schoenhoff M (2001) Colloid Surf A Physicochem Eng Asp 190:185

    Article  CAS  Google Scholar 

  15. 15.

    Rasmusson M, Routh A, Vincent B (2004) Langmuir 20:3536

    Article  CAS  Google Scholar 

  16. 16.

    Sierra-Martin B, Choi Y, Romero-Cano MS, Cosgrove T, Vincent B, Fernandez-Barbero A (2005) Macromolecules 38:10782

    Article  CAS  Google Scholar 

  17. 17.

    Varga I, Gilanyi T, Meszaros R, Filipcsei G, Zrinyi M (2001) J Phys Chem B 105(38):9071. doi:10.1021/jp004600w. URL: http://pubs.acs.org/doi/abs/10.1021/jp004600w

    Article  CAS  Google Scholar 

  18. 18.

    Nerapusri V, Keddie JL, Vincent B, Bushnak IA (2006) Langmuir 22:5036

    Article  CAS  Google Scholar 

  19. 19.

    Schmidt S, Hellweg T, von Klitzing R Langmuir (2008) 24(21):12595. doi:10.1021/la801770n. URL: http://pubs.acs.org/doi/abs/10.1021/la801770n. PMID: 18847289

    Article  CAS  Google Scholar 

  20. 20.

    Schmidt S, Motschmann H, Hellweg T, von Klitzing R (2008) Polymer 49(3):749. doi:10.1016/j.polymer.2007.12.025

    Article  CAS  Google Scholar 

  21. 21.

    Hellweg T, Dewhurst CD, Brueckner E, Kratz K, Eimer W (2000) Colloid Polym Sci 278:972

    Article  CAS  Google Scholar 

  22. 22.

    Sorrell CD, Lyon LA (2007) J Phys Chem B 111:4060

    Article  CAS  Google Scholar 

  23. 23.

    Wiedemair J, Serpe MJ, Kim J, Masson JF, Lyon LA, Mizaikoff B, Kranz C (2007) Langmuir 23:130

    Article  CAS  Google Scholar 

  24. 24.

    Matzelle T, Ivanov D, Landwehr D, Heinrich L, Herkt-Bruns C, Reichelt R, Kruse N (2002) J Phys Chem B 106(11):2861. doi:10.1021/jp0128426

    Article  CAS  Google Scholar 

  25. 25.

    Matzelle T, Geuskens G, Kruse N (2003) Macromolecules 36(8):2926. doi:10.1021/ma021719p

    Article  CAS  Google Scholar 

  26. 26.

    Harmon M, Kucking D, Frank C (2003) Langmuir 19(26):10660. doi:10.1021/la030232m

    Article  CAS  Google Scholar 

  27. 27.

    Cheng X, Canavan H, Stein M, Hull J, Kweskin S, Wagner M, Somorjai G, Castner D, Ratner B (2005) Langmuir 21(17):7833

    Article  CAS  Google Scholar 

  28. 28.

    Junk MJN, Berger R, Jonas U (2010) Langmuir 26(10):7262. doi:10.1021/la903396v

    Article  CAS  Google Scholar 

  29. 29.

    Tagit O, Tomczak N, Vancso GJ (2008) Small 4(1):119. doi:10.1002/smll.200700260

    Article  CAS  Google Scholar 

  30. 30.

    Banquy X, Zhu XX, Giasson S (2008) J Phys Chem B 112(39):12208. doi:10.1021/jp803605d

    Article  CAS  Google Scholar 

  31. 31.

    Hashmi SM, Dufresne ER (2009) Soft Matter 5(19):3682. doi:10.1039/b906051k

    Article  CAS  Google Scholar 

  32. 32.

    Banquy X, Suarez F, Argaw A, Rabanel JM, Grutter P, Bouchard JF, Hildgen P, Giasson S (2009) Soft Matter 5(20):3984. doi:10.1039/b821583a

    Article  CAS  Google Scholar 

  33. 33.

    Radji S, Alem H, Demoustier-Champagne S, Jonas AM, Cuenot S (2010) J Phys Chem B 114(15):4939. doi:10.1021/jp909819h

    Article  Google Scholar 

  34. 34.

    Dimitriadis E, Horkay F, Maresca J, Kachar B, Chadwick R (2002) Biophys J 82(5):2798

    Article  CAS  Google Scholar 

  35. 35.

    Attard P (2007) J Phys Condens Matter 19(47):473201. doi:10.1088/0953-8984/19/47/473201

    Article  Google Scholar 

  36. 36.

    Burmistrova A, Steitz R, von Klitzing R (2010) ChemPhysChem 11(17):3571. doi:10.1002/cphc.201000378

    Article  CAS  Google Scholar 

  37. 37.

    Burmistrova A, von Klitzing R (2010) J Mater Chem 20(17):3502

    Article  CAS  Google Scholar 

  38. 38.

    Wang W, Troll K, Kaune G, Metwalli E, Ruderer M, Skrabania K, Laschewsky A, Roth SV, Papadakis CM, Mueller-Buschbaum P (2008) Macromolecules 41(9):3209. doi:10.1021/ma7027775

    Article  CAS  Google Scholar 

  39. 39.

    Cheng H, Shen L, Wu C (2006) Macromolecules 39:2325

    Article  CAS  Google Scholar 

  40. 40.

    Liu K, Ovaert TC, Mason JJ (2008) J Mater Sci Mater Med 19(4):1815. doi:10.1007/s10856-007-3325-x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank TU Berlin and German Research Council (DFG) for the financial support via the priority program 1259 “Intelligente Hydrogele” (KL1165-7/1 and 2) and CoE UniCat.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Regine v. Klitzing.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Burmistrova, A., Richter, M., Uzum, C. et al. Effect of cross-linker density of P(NIPAM-co-AAc) microgels at solid surfaces on the swelling/shrinking behaviour and the Young’s modulus. Colloid Polym Sci 289, 613–624 (2011). https://doi.org/10.1007/s00396-011-2383-2

Download citation

Keywords

  • P(NIPAM-co-AAc)
  • Scanning force microscopy
  • Microgels