Skip to main content
Log in

Synthesis and characterization of a hybrid material from self-assembling colloidal particles and carbon nanotubes

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The work describes the synthesis of a hybrid material starting from surface-modified colloidal particles of styrene (ST)-acrylic acid (AA) copolymer and carbon nanotubes (CNTs). Vinyl double bonds have been chemically grafted on the surface of the ST-AA copolymer particles in order to be able to copolymerize with acrylamide (AM). The hybrid material was obtained by reaction between the free radicals resulted from both copolymerization and AM homopolymerization and the superficial groups of modified CNTs. Due to the difference between the diameter of the polymer particles and the one of the CNTs, a change in the CNTs shape is to be expected (disentanglement due to steric effects). The products thus obtained have been characterized using IR, SEM, XPS, Raman, and AFM techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Waterhouse GIN, Waterland MR (2007) Opal and inverse opal photonic crystals: fabrication and characterisation. Polyhedron 26:356–368

    Article  CAS  Google Scholar 

  2. Cardoso AH, Leite CAP, Zaniquelli MED, Galembeck F (1998) Easy polymr latex self-assembly and colloidal crystal formation: the case of poly[styrene-co-(2-hydroxyethyl methacrylate)]. Coll Surf A Phys Eng Aspects 144:207–217

    Article  Google Scholar 

  3. Rusen E, Mocanu A, Marculescu Obtaining B (2010) of monodisperse particles through soap-free and seeded polymerization, respectively, through polymerization in the presence of C60. Colloid Polym Sci 288:769–776

    Article  CAS  Google Scholar 

  4. Rusen E, Mocanu A, Corobea C, Marculescu B (2010) Obtaining of monodisperse particles through soap-free polymerization in the presence of C60. Coll Surf A Phys Eng Aspects 355:23–28

    Article  CAS  Google Scholar 

  5. Preda N, Matei E, Enculescu M, Rusen E, Mocanu A, Marculescu B, Enculescu I (2010) Effect of aqueous comonomer solubility on the surfactant-free emulsion copolymerization of methyl methacrylate. J Polym Res 18:25–30. doi:10.1007/s10965-009-9387-3

    Article  Google Scholar 

  6. E Rusen, A Mocanu, B Marculescu, C Andronescu, IC Stancu, A Ioncea, I Antoniac (2011) Influence of the solid-liquid adhesion on the self-assembling properties of colloidal particles. In: Photonic crystals: fabrication, band structure and applications, chapter 9. Nova Publishers, New York

  7. Quin D, Qin GLS, Ford Microscopic WT (2010) Composition maps of poly(styrene-co-2-hydroxyethylmethacrylate) colloidal crystals and interconnected colloidal arrays. Langmuir 26:6256–6261

    Article  Google Scholar 

  8. Zhang J, Sun Z, Yang B (2009) Self-assembly of photonic crystals from polymer colloids. Curr Opin Colloid Interface Sci 14:103–114

    Article  Google Scholar 

  9. Zhang L, Xiong Y (2007) Rapid self-assembly of microspheres at liquid surface by controlling evaporation and its mechanism. J Colloid Interface Sci 306:428–432

    Article  CAS  Google Scholar 

  10. Ge H, Song Y, Jiang L, Zhu D (2006) One-step preparation of polystyrene colloidal crystal films with structural colors and high hydrophobicity. Thin Solid Films 515:1539–1543

    Article  CAS  Google Scholar 

  11. Chiappini A, Armellini C, Chiasera A, Ferrari M, Fortes L, Clara Goncalves M, Guider R, Jestin Y, Nunzi Conti G, Pelli S, Almeida Rui M, Righini GC (2009) An alternative method to obtain direct opal photonic crystal structure. J Non-Cryst Solids 355:1167–1170

    Article  CAS  Google Scholar 

  12. He YQ, Wang XD, Wang JY, Feng Y, Zhao YQ, You XD (2007) PAM-PAA microgel inverse opal photonic crystal and pH response. Chin Chem Lett 18:1395–1398

    CAS  Google Scholar 

  13. Dushin CD, Nagayama K, Miwa T, Kralcevsky PA (1993) Colored Multilayers from Transparent Submicrometer Spheres. Langmuir 9:3695–3701

    Article  Google Scholar 

  14. Wang X, Husson SM, Qian X, Wickramasinghe Vertical SR (2009) cell assembly of colloidal crystal films with controllable thickness. Mater Lett 63:1981–1983

    Article  CAS  Google Scholar 

  15. Fudouzi Novel H (2007) Coating method for artificial opal films and its process analysis. Coll Surf 311:11–15

    Article  Google Scholar 

  16. He X, Thomann Y, Leyrer RJ, Rieger Iridescent J (2006) Colors from films made of polymeric core-shell particles. Polym Bull 57:785–796

    Article  CAS  Google Scholar 

  17. Tang F, Fudouzi H, Zhang J, Sakka Y (2003) Preparation of macroporous titania from nanoparticle building blocks and polymer templates. Scr Mater 49:735–740

    Article  CAS  Google Scholar 

  18. Coleman JN, Khan U, Blau WJ, Gun'ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44(9):1624–1652

    Article  CAS  Google Scholar 

  19. Kaneto K, Tsuruta M, Sakai G, Cho WY, Ando Y (1999) Electrical conductivities of multi-wall carbon nano tubes. Synth Met 103(1–3):2543–2546

    Article  CAS  Google Scholar 

  20. Bokobza L (2007) Multiwall carbon nanotube elastomeric composites: a review. Polymer 48(17):4907–4920

    Article  CAS  Google Scholar 

  21. Xie X-L, Mai Y-W, Zhou X-P (2005) Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater Sci Eng R: Reports 49(4):89–112

    Article  Google Scholar 

  22. Steinert BW, Dean DR (2009) Magnetic field alignment and electrical properties of solution cast PET–carbon nanotube composite films. Polymer 50(3):898–904

    Article  CAS  Google Scholar 

  23. Bliznyuk VN, Singamaneni S, Sanford RL, Chiappetta D, Crooker B, Shibaev PV (2006) Matrix mediated alignment of single wall carbon nanotubes in polymer composite films. Polymer 11(17):3915–3921

    Article  Google Scholar 

  24. Samaneh A, Pierre JC, Abdessalem D (2010) Flow induced orientation of multiwalled carbon nanotubes in polycarbonate nanocomposites: rheology, conductivity and mechanical properties. Polymer 51(4):922–935

    Article  Google Scholar 

  25. Qinghao Meng, Jinlian Hu (2008) Self-organizing alignment of carbon nanotubes in shape memory segmented fiber prepared by in situ polymerization and melt spinning. Composites Part A: Applied Science and Manufacturing 39(2):314–321

    Google Scholar 

  26. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106(3):1105–1136

    Article  CAS  Google Scholar 

  27. Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401

    Article  CAS  Google Scholar 

  28. Jiang S, Deng J, Yang W (2008) Functionalization of multi-walled carbon nanotubes by thermo-grafting with alpha-methylstyrene-containing copolymers. Macromol Rapid Commun 29(18):1521–1526

    Article  CAS  Google Scholar 

  29. Akbar S, Beyou E, Cassagnau P, Chaumont P, Farzi G (2009) Radical grafting of polyethylene onto MWCNTs: a model compound approach. Polymer 50(12):2535–2543

    Article  CAS  Google Scholar 

  30. Blake RC, Coleman JN, Byrne MT, McCarthy JE, Perova TS, Blau WJ (2006) J Mater Chem 16:4206–4213

    Article  CAS  Google Scholar 

  31. Baskaran D, Dunlap JR, Mays JW, Bratcher MS (2005) Grafting efficiency of hydroxy-terminated poly(methyl methacrylate) with multiwalled carbon nanotubes. Macromol Rapid Commun 26(6):481–486

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The National Authority for Scientific Research from The Ministry of Education, Research and Youth of Romania is gratefully acknowledged for the financial support through project “POSDRU/89/1.5/S/54785” and “POSDRU/88/1.5/S/61178”. Dr. Eugeniu Vasile is gratefully acknowledged for his kind support with the scanning electron microscopy. The project PN II IDEAS 729/2009 Polymer biomaterials for bone regeneration. Biomimetism through surface nanostructing is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edina Rusen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mocanu, A., Rusen, E., Marculescu, B. et al. Synthesis and characterization of a hybrid material from self-assembling colloidal particles and carbon nanotubes. Colloid Polym Sci 289, 387–394 (2011). https://doi.org/10.1007/s00396-011-2378-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-011-2378-z

Keywords

Profiles

  1. Edina Rusen