Skip to main content

Advertisement

Log in

Cyclodextrin-responsive nanogel as an artificial chaperone for horseradish peroxidase

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The thermal stabilization and refolding of horseradish peroxidase (HRP) upon heating were investigated using an artificial molecular chaperone consisting of cholesterol-bearing pullulan (CHP) nanogels. The CHP nanogels inhibited the aggregation of HRP under heating by complexation with the denatured HRP. The enzyme activity of HRP complexed with CHP nanogels was not detected. However, the enzyme activity recovered up to 80% of native HRP after the addition of cyclodextrin (CD) to the complex. The dissociation of CHP nanogels was induced by the formation of an inclusion complex of cholesterol groups of CHP with CD. The enzyme activity of HRP was only significantly recovered by the addition of β-CD or its derivatives. Natural molecular chaperones, such as GroEL/ES, trap, fold, and release the nonnative proteins by changing the hydrophobicity of the specific sites of the molecular chaperone that interact with the nonnative protein. The functional mechanism of the nanogel chaperon system is similar to that of natural molecular chaperones. The nanogel chaperone system is a useful tool to aid the refolding and thermal stabilization of unstable proteins for post-genome research, and in medical and biological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stuart MA, Huck WT, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Emerg applications stimuli responsive polymer materials. Nat Mater 9:101–113

    Article  Google Scholar 

  2. Du FS, Wang Y, Zhang R, Li ZC (2010) Intelligent nucleic acid delivery systems based on stimuli-responsive polymers. Soft Matter 6:835–848

    Article  CAS  Google Scholar 

  3. Asoh TA, Akashi M (2009) Development of high-performance stimuli-responsive systems. In: Stein DB (ed) Handbook of hydrogels: properties, preparation and applications (chemical engineering methods and technology series). Nova Science Publishers, Hauppauge, pp 633–648

    Google Scholar 

  4. Li MH, Keller P (2009) Stimuli-responsive polymer vesicles. Soft Matter 5:927–937

    Article  CAS  Google Scholar 

  5. Xia F, Zhu Y, Feng L, Jiang L (2009) Smart responsive surfaces switching reversibly between super-hydrophobicity and super-hydrophilicity. Soft Matter 5:275–281

    Article  CAS  Google Scholar 

  6. Cole MA, Voelcker NH, Thissen H, Griesser HJ (2009) Stimuli-responsive interfaces and systems for the control of protein-surface and cell-surface interactions. Biomaterials 30:1827–1850

    Article  CAS  Google Scholar 

  7. Kloxin M, Kloxin CJ, Bowman CN, Anseth KS (2010) Mechanical properties of cellularly responsive hydrogels and their experimental determination. Adv Mater 22:3484–3494

    Article  CAS  Google Scholar 

  8. Vinogradov SV, Batrakova EV, Kabanov AV (1999) Poly-(ethylene glycol)-polyethyleneimine NanoGel particles: novel drug delivery systems for antisense oligonucleotides. Colloids Surf B 16:291–304

    Article  CAS  Google Scholar 

  9. Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K (2008) The development of microgels/nanogels for drug delivery applications. Prog Polym Sci 33:448–477

    Article  CAS  Google Scholar 

  10. Sasaki Y, Akiyoshi K (2010) Nanogel engineering for new nanobiomaterials: from chaperoning engineering to biomedical applications. The Chemical Record 10:366–376

    CAS  Google Scholar 

  11. Reamdonck K, Demeester J, De Smedt S (2009) Advanced nanogel engineering for drug delivery. Soft Matter 5:707–715

    Article  Google Scholar 

  12. Roy D, Cambre JN, Sumerlin BS (2010) Future perspectives and recent advances in stimuli-responsive materials. Prog Polym Sci 35:278–301

    Article  CAS  Google Scholar 

  13. Ju XJ, Xie R, Yang L, Chu LY (2009) Biodegradable 'intelligent' materials in response to chemical stimuli for biomedical applications. Expert Opin Ther Pat 19:683–696

    Article  CAS  Google Scholar 

  14. Akiyoshi K, Deguchi S, Moriguchi N, Yamaguchi S, Sunamoto J (1993) Self-aggregates of hydrophobized polysaccharides in water-formation and characteristics of nanoparticles. Macromolecules 26:3062–3068

    Article  CAS  Google Scholar 

  15. Akiyoshi K, Deguchi S, Tajima H, Kishikawa T, Sunamoto J (1997) Microscopic structure and thermoresponsiveness of a hydrogel nanoparticle by self-assembly of a hydrophobized polysaccharide. Macromolecules 30:857–861

    Article  CAS  Google Scholar 

  16. Nishikawa T, Akiyoshi K, Sunamoto J (1996) Macromolecular complexation between bovine serum albumin and self-assembled hydrogel nanoparticle of hydrophobized polysaccharides. J Am Chem Soc 118:6110–6115

    Article  CAS  Google Scholar 

  17. Ikuta Y, Katayama N, Wang L, Okugawa T, Takahashi Y, Schmitt M, Gu X, Watanabe M, Akiyoshi K, Nakamura H, Kuribayashi K, Sunamoto J, Shiku H (2002) Presentation of a major histocompatibility complex class 1-binding peptide by monocyte-derived dendritic cells incorporating hydrophobized polysaccharide-truncated HER2 protein complex: implications for a polyvalent immuno-cell therapy. Blood 99:3717–3724

    Article  CAS  Google Scholar 

  18. Nochi T, Yuki Y, Takahashi H, Sawada SI, Mejima M, Kohda T, Harada N, Kong IG, Sato A, Kataoka N, Tokuhara D, Kurokawa S, Takahashi Y, Tsukada H, Kozaki S, Akiyoshi K, Kiyono H (2010) Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines. Nat Mater 9:572–578

    Article  CAS  Google Scholar 

  19. Akiyoshi K, Ueminami A, Kurumada S, Nomura Y (2000) Self-association of cholesteryl-bearing poly(l-lysine) in water and control of its secondary structure by host–guest interaction with cyclodextrin. Macromolecules 33:6752–6756

    Article  CAS  Google Scholar 

  20. Akiyoshi K, Kang EC, Kurumada S, Sunamoto J, Principi T, Winnik FM (2000) Controlled association of amphiphilic polymers in water: thermosensitive nanoparticles formed by self-assembly of hydrophobically modified pullulans and poly(N-isopropylacrylamides). Macromolecules 33:3244–3249

    Article  CAS  Google Scholar 

  21. Hirakura T, Nomura Y, Aoyama Y, Akiyoshi K (2004) Photoresponsive nanogels formed by the self-assembly of spiropyrane-bearing pullulan that act as artificial molecular chaperones. Biomacromolecules 5:1804–1809

    Article  CAS  Google Scholar 

  22. Akiyoshi K, Sasaki Y, Kuroda K, Sumanoto J (1998) Controlled association of hydrophobized polysaccharide by cyclodextrin. Chem Lett 27:93–94

    Article  Google Scholar 

  23. Sendtner M, Carroll P, Holtmann B, Hughes RA, Thoenen H (1994) Ciliary neurotrophic factor. J Neurobiol 25:1436–1453

    Article  CAS  Google Scholar 

  24. Chen BL, Arakawa T (1996) Stabilization of recombinant human keratinocyte growth factor by osmolytes and salts. J Pharm Sci 85:419–422

    Article  CAS  Google Scholar 

  25. Chen BL, Arakawa T, Hsu E, Narhi LO, Tressel TJ, Chien SL (1994) Strategies to suppress aggregation of recombinant keratinocyte growth factor during liquid formulation development. J Pharm Sci 83:1657–1661

    Article  CAS  Google Scholar 

  26. Sharma L, Sharma A (2001) Influence of cyclodextrin ring substituents on folding-related aggregation of bovine carbonic anhydrase. Eur J Biochem 268:2456–2463

    Article  CAS  Google Scholar 

  27. Machida S, Ogawa S, Shi X, Takaha T, Fujii K, Hayashi K (2000) Cycloamylose as an efficient artificial chaperone for protein refolding. FEBS Lett 486:131–135

    Article  CAS  Google Scholar 

  28. Nomura Y, Ikeda M, Yamaguchi N, Aoyama Y, Akiyoshi K (2003) Protein refolding assisted by self-assembled nanogels as novel artificial molecular chaperone. FEBS Lett 553:271–276

    Article  CAS  Google Scholar 

  29. Asayama W, Sawada S, Taguchi H, Akiyoshi K (2008) Comparison of refolding activities between nanogel artificial chaperone and GroEL systems. Int J Biol Macromol 42:241–246

    Article  CAS  Google Scholar 

  30. Sawada S, Nomura Y, Aoyama Y, Akiyoshi K (2006) Heat shock protein-like activity of nanogel artificial chaperone for citrate synthase. J Bioact Compat Polym 21:487–501

    Article  CAS  Google Scholar 

  31. Rozema D, Gellman SH (1995) Artificial chaperones: protein refolding via sequential use of detergent and cyclodextrin. J Am Chem Soc 117:2373–2374

    Article  CAS  Google Scholar 

  32. Cleland JL, Hedgepeth C, Wang DIC (1992) Polyethylene glycol enhanced refolding of bovine carbonic anhydrase B. Reaction stoichiometry refolding model. J Biol Chem 267:13327–13334

    CAS  Google Scholar 

  33. Shimizu H, Fujimoto K, Kawaguchi H (2000) Renaturation of reduced ribonuclease A with a microsphere-induced refolding system. Biotechnol Prog 16:248–253

    Article  CAS  Google Scholar 

  34. Dong XY, Wang Y, Shi JH, Sun Y (2002) Size exclusion chromatography with an artificial chaperone system enhanced lysozyme renaturation. Enzyme Microb Technol 30:792–797

    Article  CAS  Google Scholar 

  35. Morimoto N, Endo T, Ohtomi M, Iwasaki Y, Akiyoshi K (2005) Hybrid nanogels with physical and chemical cross-linking structures as nanocarriers. Macromol Biosci 5:710–716

    Article  CAS  Google Scholar 

  36. Bloxham DP, Ericsson LH, Titani K, Walsh KA, Neurath H (1980) Limited proteolysis of pig heart citrate synthase by subtilisin, chymotrypsin, and trypsin. Biochemistry 19:3979–3985

    Article  CAS  Google Scholar 

  37. Avrameas S, Guilbert B (1972) Enzyme-immunoassay for the measurement of antigens using peroxidase conjugates. Biochimie 54:837–842

    Article  CAS  Google Scholar 

  38. Smith AT, Santama N, Dacey S, Edwards M, Bray RC, Thorneley RN, Burke JF (1990) Expression of a synthetic gene for horseradish peroxidase C in Escherichia coli and folding and activation of the recombinant enzyme with Ca2+ and heme. J Biol Chem 265:13335–13343

    CAS  Google Scholar 

  39. Doyle WA, Smith AT (1996) Expression of lignin peroxidase H8 in Escherichia coli: folding and activation of the recombinant enzyme with Ca2+ and hem. Biochem J 315:15–19

    CAS  Google Scholar 

  40. Breslow R, Zhang BL (1996) Cholesterol recognition and binding by cyclodextrin dimers. J Am Chem Soc 118:8495–8496

    Article  CAS  Google Scholar 

  41. Harada A, Adachi H, Kawaguchi Y, Kamachi M (1997) Recognition of alkyl groups on a polymer chain by cyclodextrins. Macromolecules 30:5181–5182

    Article  CAS  Google Scholar 

  42. Nomura Y, Sasaki Y, Takagi M, Narita T, Aoyama Y, Akiyoshi K (2005) Thermoresponsive controlled association of protein with a dynamic nanogel of hydrophobized polysaccharide and cyclodextrin: heat shock protein-like activity of artificial molecular chaperone. Biomacromolecules 6:447–452

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants-in-Aid for Scientific Research from the Japanese government (nos. 20240047 and 18GS0421).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunari Akiyoshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sawada, Si., Sasaki, Y., Nomura, Y. et al. Cyclodextrin-responsive nanogel as an artificial chaperone for horseradish peroxidase. Colloid Polym Sci 289, 685–691 (2011). https://doi.org/10.1007/s00396-010-2361-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-010-2361-0

Keywords

Navigation