Colloid and Polymer Science

, Volume 289, Issue 5–6, pp 497–512 | Cite as

Combination of living anionic polymerization and ATRP via “click” chemistry as a versatile route to multiple responsive triblock terpolymers and corresponding hydrogels

  • Stefan Reinicke
  • Holger SchmalzEmail author
Original Contribution


A combination of anionic polymerization, atom transfer radical polymerization (ATRP) and “click” chemistry was used to construct trishydrophilic ABC triblock terpolymers composed of a pH-sensitive A block, a water-soluble B block and two different thermo-sensitive C blocks without any block sequence limitation problems. First, an azido end-functionalized poly(2-vinylpyridine)-block-poly(ethylene oxide) (P2VP-b-PEO-N3) diblock copolymer was synthesized by anionic polymerization. In a second step, poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) and poly(oligo(ethylene glycol) methacrylate) (POEGMA) were synthesized via ATRP using an alkyne functionalized initiator. The resulting polymers were attached to the P2VP-b-PEO-N3 diblock copolymer using the 1,3-dipolar Huisgen cycloaddition (“click” chemistry). For the “click” step, P2VP-b-PEO-N3 diblock copolymers with either an azidoacetyl or a 2-azidoisobutyryl group were tested. In the latter case, however, a side reaction involving the cleavage of the formed “click” product via nucleophilic substitution occurred, preventing a permanent attachment of PDMAEMA or POEGMA to the P2VP-b-PEO-N3 diblock copolymer. Finally, P2VP-b-PEO-b-POEGMA (with POEGMA=P(MEO2MA-co-MEO8.5MA)) and P2VP-b-PEO-b-PDMAEMA triblock terpolymers were successfully synthesized and used to construct stimuli-responsive hydrogels. A concentrated solution of P2VP56-b-PEO370-b-P[(MEO2MA)89-co-(MEO8.5MA)7] showed a gel–sol–gel transition at pH 7 upon temperature increase, whereas in the case of P2VP56-b-PEO370-b-PDMAEMA70, a gel–sol or a weak gel–strong gel transition was observed, depending on the applied pH. Finally, the addition of trivalent hexacyanocobaltate(III) ions to the P2VP56-b-PEO370-b-PDMAEMA70 solution induced an upper critical solution temperature for the PDMAEMA block, which led to gel formation. This allows for the construction of light-sensitive hydrogels, utilizing the photo-aquation of hexacyanocobaltate(III) ions.


Anionic polymerization “Click” chemistry Triblock terpolymer Multi-responsive hydrogel Light sensitivity Rheology 



We would like to thank Ingo Rehberg and Reinhard Richter (Experimental Physics V, University of Bayreuth) for providing us with the rheology equipment, Marietta Böhm (MCII, University of Bayreuth) for conducting the SEC measurements, and Felix Plamper (RWTH Aachen) for helpful discussion. Financial support from the German Science Foundation (priority programme SPP 1259) is gratefully acknowledged.

Supplementary material

396_2010_2359_MOESM1_ESM.pdf (290 kb)
ESM 1 (PDF 289 kb)


  1. 1.
    Baskaran D, Müller AHE (2007) Anionic vinyl polymerization—50 years after Michael Szwarc. Prog Polym Sci 32:173–219CrossRefGoogle Scholar
  2. 2.
    Matyjaszewski K, Müller AHE (2009) Controlled and living polymerizations—from mechanisms to applications. Wiley-VCH, WeinheimGoogle Scholar
  3. 3.
    Hadjichristidis N, Pispas S, Floudas GA (2003) Block copolymers—synthetic strategies, physical properties and applications. Wiley, HobokenGoogle Scholar
  4. 4.
    Ahn S-k, Kasi RM, Kim S-C, Sharma N, Zhou Y (2008) Stimuli-responsive polymer gels. Soft Matter 4:1151–1157CrossRefGoogle Scholar
  5. 5.
    He C, Kim SW, Lee DS (2008) In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. J Controlled Release 127:189–207CrossRefGoogle Scholar
  6. 6.
    Tsitsilianis C (2010) Responsive reversible hydrogels from associative “smart” macromolecules. Soft Matter 6:2372–2388CrossRefGoogle Scholar
  7. 7.
    Guenther M, Kuckling D, Corten C, Gerlach G, Sorber J, Suchaneck G, Arndt KF (2007) Chemical sensors based on multiresponsive block copolymer hydrogels. Sens Actuators B 126:97–106CrossRefGoogle Scholar
  8. 8.
    Yu L, Ding J (2008) Injectable hydrogels as unique biomedical materials. Chem Soc Rev 37:1473–1481CrossRefGoogle Scholar
  9. 9.
    Reinicke S, Schmelz J, Lapp A, Karg M, Hellweg T, Schmalz H (2009) Smart hydrogels based on double responsive triblock terpolymers. Soft Matter 5:2648–2657Google Scholar
  10. 10.
    Ah Toy A, Reinicke S, Müller AHE, Schmalz H (2007) One-pot synthesis of polyglycidol-containing block copolymers with alkyllithium initiators using the phosphazene base t-BuP4. Macromolecules 40:5241–5244CrossRefGoogle Scholar
  11. 11.
    Reinicke S, Karg M, Lapp A, Heymann L, Hellweg T, Schmalz H (2010) Flow induced ordering in cubic gels formed by P2VP-b-PEO-b-P(GME-co-EGE) triblock terpolymer micelles: a rheo-SANS study. Macromolecules 43:10045–10054Google Scholar
  12. 12.
    Banks P, Peters RH (1970) Polymerization and crosslinking of epoxides: base-catalyzed polymerization of phenyl glycidyl ether. J Polym Sci A Polym Chem 8:2595–2610CrossRefGoogle Scholar
  13. 13.
    Stolarzewicz A (1986) A new chain transfer reaction in the anionic polymerization of 2,3-epoxypropyl phenyl ether and other oxiranes. Makromol Chem 187:745–752CrossRefGoogle Scholar
  14. 14.
    Stolarzewicz A, Grobelny Z (1992) New aspects in the anionic polymerization of phenyl glycidyl ether. Makromol Chem 193:531–538CrossRefGoogle Scholar
  15. 15.
    Dworak A, Panchev I, Trzebicka B, Walach W (2000) Hydrophilic and amphiphilic copolymers of 2,3-epoxypropanol-1. Macromol Symp 153:233–242CrossRefGoogle Scholar
  16. 16.
    Hans M, Keul H, Möller M (2009) Chain transfer reactions limit the molecular weight of polyglycidol prepared via alkali metal based initiating systems. Polymer 50:1103–1108CrossRefGoogle Scholar
  17. 17.
    Han S, Hagiwara M, Ishizone T (2003) Synthesis of thermally sensitive water-soluble polymethacrylates by living anionic polymerizations of oligo(ethylene glycol) methyl ether methacrylates. Macromolecules 36:8312–8319CrossRefGoogle Scholar
  18. 18.
    Lutz J-F, Hoth A (2005) Preparation of ideal PEG analogues with a tunable thermosensitivity by controlled radical copolymerization of 2-(2-methoxyethoxy)ethyl methacrylate and oligo(ethylene glycol) methacrylate. Macromolecules 39:893–896CrossRefGoogle Scholar
  19. 19.
    Mertoglu M, Garnier S, Laschewsky A, Skrabania K, Storsberg J (2005) Stimuli responsive amphiphilic block copolymers for aqueous media synthesised via reversible addition fragmentation chain transfer polymerisation (RAFT). Polymer 46:7726–7740CrossRefGoogle Scholar
  20. 20.
    Plamper FA, Schmalz A, Penott-Chang E, Drechsler M, Jusufi A, Ballauff M, Müller AHE (2007) Synthesis and characterization of star-shaped poly(N,N-dimethylaminoethyl methacrylate) and its quaternized ammonium salts. Macromolecules 40:5689–5697CrossRefGoogle Scholar
  21. 21.
    Plamper FA, Ruppel M, Schmalz A, Borisov O, Ballauff M, Müller AHE (2007) Tuning the thermoresponsive properties of weak polyelectrolytes: aqueous solutions of star-shaped and linear poly(N,N-dimethylaminoethyl methacrylate). Macromolecules 40:8361–8366CrossRefGoogle Scholar
  22. 22.
    Plamper FA, Schmalz A, Müller AHE (2007) Tuning the thermoresponsiveness of weak polyelectrolytes by pH and light: lower and upper critical-solution temperature of poly(N,N-dimethylaminoethyl methacrylate). J Am Chem Soc 129:14538–14539CrossRefGoogle Scholar
  23. 23.
    Schacher F, Müllner M, Schmalz H, Müller AHE (2009) New block copolymers with poly(N,N-dimethylaminoethyl methacrylate) as a double stimuli-responsive block. Macromol Chem Phys 210:256–262CrossRefGoogle Scholar
  24. 24.
    Kloninger C, Rehahn M (2004) 1,1-Dimethylsilacyclobutane-mediated living anionic block copolymerization of [1]dimethylsilaferrocenophane and methyl methacrylate. Macromolecules 37:1720–1727CrossRefGoogle Scholar
  25. 25.
    Sheikh MRK, Tharanikkarasu K, Imae I, Kawakami Y (2001) Silacyclobutane as “carbanion pump” in anionic polymerization. 2. Effective trapping of the initially formed carbanion by diphenylethylene. Macromolecules 34:4384–4389CrossRefGoogle Scholar
  26. 26.
    Sheikh MRK, Imae I, Tharanikkarasu K, Lestrat VM-J, Kawakami Y (2000) Silacyclobutanes as “carbanion pump” in anionic polymerization I. Anionic polymerization of styrene by potassium t-butoxide in the presence of silacyclobutanes. Polym J 32:527–530CrossRefGoogle Scholar
  27. 27.
    Kamigaito M, Ando T, Sawamoto M (2001) Metal-catalyzed living radical polymerization. Chem Rev 101:3689–3746CrossRefGoogle Scholar
  28. 28.
    Matyjaszewski K, Xia J (2001) Atom transfer radical polymerization. Chem Rev 101:2921–2990CrossRefGoogle Scholar
  29. 29.
    Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40:2004–2021CrossRefGoogle Scholar
  30. 30.
    Huisgen R (1963) Kinetics and mechanism of 1,3-dipolar cycloadditions. Angew Chem Int Ed 2:633–645CrossRefGoogle Scholar
  31. 31.
    Huisgen R (1963) 1,3-Dipolar cycloadditions. Past and future. Angew Chem Int Ed 2:565–598CrossRefGoogle Scholar
  32. 32.
    Binder WH, Sachsenhofer R (2007) “Click” chemistry in polymer and materials science. Macromol Rapid Commun 28:15–54CrossRefGoogle Scholar
  33. 33.
    Hein CD, Liu X-M, Wang D (2008) Click chemistry, a powerful tool for pharmaceutical sciences. Pharm Res 25:2216–2230CrossRefGoogle Scholar
  34. 34.
    Sumerlin BS, Vogt AP (2009) Macromolecular engineering through click chemistry and other efficient transformations. Macromolecules 43:1–13CrossRefGoogle Scholar
  35. 35.
    Forster MO, Fierz HE (1908) LXI.—The triazo-group. Part II. Azoimides of propionic ester and of methyl ethyl ketone. J Chem Soc Trans 93:669–678CrossRefGoogle Scholar
  36. 36.
    Huber WF (1955) Mono-α-aminoacyl and mono-α-dipeptide triglycerides. J Am Chem Soc 77:112–116CrossRefGoogle Scholar
  37. 37.
    Wieland TH, Hennig HJ (1960) Aminosäure-sulfimide. Chem Ber 93:1236–1246CrossRefGoogle Scholar
  38. 38.
    Shi G-Y, Tang X-Z, Pan C-Y (2008) Tadpole-shaped amphiphilic copolymers prepared via RAFT polymerization and click reaction. J Polym Sci A Polym Chem 46:2390–2401CrossRefGoogle Scholar
  39. 39.
    Lutz J-F (2008) Copper-free azide-alkyne cycloadditions: new insights and perspectives. Angew Chem Int Ed 47:2182–2184CrossRefGoogle Scholar
  40. 40.
    Becer CR, Hoogenboom R, Schubert US (2009) Click chemistry beyond metal-catalyzed cycloaddition. Angew Chem Int Ed 48:4900–4908CrossRefGoogle Scholar
  41. 41.
    Zeng F, Shen Y, Zhu S (2002) Atom-transfer radical polymerization of 2-(N,N-dimethylamino)ethyl acrylate. Macromol Rapid Commun 23:1113–1117CrossRefGoogle Scholar
  42. 42.
    Coessens V, Matyjaszewski K (1999) Dehalogenation of polymers prepared by atom transfer radical polymerization. Macromol Rapid Commun 20:66–70CrossRefGoogle Scholar
  43. 43.
    Gao H, Louche G, Sumerlin BS, Jahed N, Golas P, Matyjaszewski K (2005) Gradient polymer elution chromatographic analysis of α, ω-dihydroxypolystyrene synthesized via ATRP and click chemistry. Macromolecules 38:8979–8982CrossRefGoogle Scholar
  44. 44.
    Whittaker MR, Urbani CN, Monteiro MJ (2006) Synthesis of 3-miktoarm stars and 1st generation mikto dendritic copolymers by “living” radical polymerization and “click” chemistry. J Am Chem Soc 128:11360–11361CrossRefGoogle Scholar
  45. 45.
    Vogt AP, Sumerlin BS (2006) An efficient route to macromonomers via ATRP and click chemistry. Macromolecules 39:5286–5292CrossRefGoogle Scholar
  46. 46.
    Mustafa D, Nasrettin G (2009) Synthesis of well-defined telechelic macrophotoinitiator of polystyrene by combination of ATRP and click chemistry. Macromol Chem Phys 210:1617–1623CrossRefGoogle Scholar
  47. 47.
    Xiaohua H, Liyuan L, Kai W, Shaoliang L, Deyue Y, Yiqun Z (2009) A new synthetic approach to asymmetric amphiphilic ABA′ block copolymers by ATRP and click reactions. J Appl Polym Sci 111:560–565CrossRefGoogle Scholar
  48. 48.
    Ozcan A, Gurkan H, Umit T (2006) ABC-type hetero-arm star terpolymers through “click” chemistry. J Polym Sci A Polym Chem 44:5699–5707CrossRefGoogle Scholar
  49. 49.
    Winter HH, Mours M (1997) Rheology of polymers near liquid–solid transitions. Adv Polym Sci 134:165–234CrossRefGoogle Scholar
  50. 50.
    Nishinari K (2009) Some thoughts on the definition of a gel. Prog Colloid Polym Sci 136:87–94Google Scholar
  51. 51.
    Chaibundit C, Ricardo NMPS, Costa FdeMLL, Yeates SG, Booth C (2007) Micellization and gelation of mixed copolymers P123 and F127 in aqueous solution. Langmuir 23:9229–9236CrossRefGoogle Scholar
  52. 52.
    Stokes JR, Frith WJ (2008) Rheology of gelling and yielding soft matter systems. Soft Matter 4:1133–1140CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Makromolekulare Chemie IIUniversität BayreuthBayreuthGermany

Personalised recommendations