Skip to main content
Log in

Gold nanoparticles reinforce self-healing microgel multilayers

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

We report on the finding that absorption of citrate-stabilized Au nanoparticles into microgel/polyelectrolye multilayer thin films results in an increase in the resistance of those films to strain-induced damage in the dry state while maintaining the remarkable self-healing properties of the films following rehydration. Films were fabricated atop elastomeric poly(dimethylsiloxane) substrates by a centrifuge-assisted layer-by-layer technique using anionic hydrogel microparticles (microgels) and cationic linear polymers as the building blocks. Gold nanoparticles were embedded into swollen hydrogel films by a simple immersion method wherein the Coulombic interactions between the anionic Au particles and the polycation are likely important. After drying, the mechanical properties of films were inferred from the observation of cracks/wrinkles formed during stretching of the elastomeric substrate. As-prepared (no Au) hydrogel films revealed the presence of damage perpendicular to the stretching direction (10% strain), as observed previously. However, Au nanoparticle-doped films displayed significantly reduced damage under identical stretching conditions while forming cracks and wrinkles under higher strains (20–30%). Importantly, all films displayed excellent self-healing behavior upon rehydration regardless of Au content, suggesting that the nanoparticle toughening effect does not interfere with the film mobility required to achieve autonomic repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. South AB, Lyon LA (2010) Autonomic self-healing of hydrogel thin films. Angew Chem Int Ed 49(4):767–771

    CAS  Google Scholar 

  2. Burattini S, Greenland BW, Chappell D, Colquhoun HM, Hayes W (2010) Healable polymeric materials: a tutorial review. Chem Soc Rev 39(6):1973–1985

    Article  CAS  Google Scholar 

  3. White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S (2001) Autonomic healing of polymer composites. Nature 409(6822):794–797

    Article  CAS  Google Scholar 

  4. Stroble GR (1997) The physics of polymers: concepts for understanding their structure and behavior. Springer, Berlin

    Google Scholar 

  5. Pang JWC, Bond IP (2005) ‘Bleeding composites’—damage detection and self-repair using a biomimetic approach. Composites Part a-Applied Science and Manufacturing 36(2):183–188

    Google Scholar 

  6. Chen XX, Dam MA, Ono K, Mal A, Shen HB, Nutt SR, Sheran K, Wudl F (2002) A thermally re-mendable cross-linked polymeric material. Science 295(5560):1698–1702

    Article  CAS  Google Scholar 

  7. Chen XX, Wudl F, Mal AK, Shen HB, Nutt SR (2003) New thermally remendable highly cross-linked polymeric materials. Macromolecules 36(6):1802–1807

    Article  CAS  Google Scholar 

  8. Chung CM, Roh YS, Cho SY, Kim JG (2004) Crack healing in polymeric materials via photochemical [2+2] cycloaddition. Chem Mater 16(21):3982–3984

    Article  CAS  Google Scholar 

  9. Boiko YM, Guerin G, Marikhin VA, Prud’homme RE (2001) Healing of interfaces of amorphous and semi-crystalline poly(ethylene terephthalate) in the vicinity of the glass transition temperature. Polymer 42(21):8695–8702

    Article  CAS  Google Scholar 

  10. Jud K, Kausch HH, Williams JG (1981) Fracture-mechanics studies of crack healing and welding of polymers. J Mater Sci 16(1):204–210

    Article  CAS  Google Scholar 

  11. Cordier P, Tournilhac F, Soulie-Ziakovic C, Leibler L (2008) Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451(7181):977–980

    Article  CAS  Google Scholar 

  12. Burattini S, Colquhoun HM, Greenland BW, Hayes W (2009) A novel self-healing supramolecular polymer system. Faraday Discuss 143:251–264

    Article  CAS  Google Scholar 

  13. Kersey FR, Loveless DM, Craig SL (2007) A hybrid polymer gel with controlled rates of cross-link rupture and self-repair. J Royal Soc Interface 4(13):373–380

    Article  CAS  Google Scholar 

  14. Murphy EB, Wudl F (2010) The world of smart healable materials. Prog Polym Sci 35(1–2):223–251

    Article  CAS  Google Scholar 

  15. Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Materials Science & Engineering R-Reports 28(1–2):1–63

    Article  Google Scholar 

  16. Sahoo NG, Rana S, Cho JW, Li L, Chan SH (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35(7):837–867

    Article  CAS  Google Scholar 

  17. Markutsya S, Jiang CY, Pikus Y, Tsukruk VV (2005) Freely suspended layer-by-layer nanomembranes: testing micromechanical properties. Adv Funct Mater 15(5):771–780

    Article  CAS  Google Scholar 

  18. Jiang CY, Markutsya S, Pikus Y, Tsukruk VV (2004) Freely suspended nanocomposite membranes as highly sensitive sensors. Nat Mater 3(10):721–728

    Article  CAS  Google Scholar 

  19. Crosby AJ, Lee JY (2007) Polymer nanocomposites: the “nano” effect on mechanical properties. Polym Rev 47(2):217–229

    Article  CAS  Google Scholar 

  20. Kharlampieva E, Kozlovskaya V, Gunawidjaja R, Shevchenko VV, Vaia R, Naik RR, Kaplan DL, Tsukruk VV (2010) Flexible silk-inorganic nanocomposites: from transparent to highly reflective. Adv Funct Mater 20(5):840–846

    Article  CAS  Google Scholar 

  21. Mamedov AA, Kotov NA, Prato M, Guldi DM, Wicksted JP, Hirsch A (2002) Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites. Nat Mater 1(3):190–194

    Article  CAS  Google Scholar 

  22. South AB, Whitmire RE, Garcia AJ, Lyon LA (2009) Centrifugal deposition of microgels for the rapid assembly of nonfouling thin films. ACS Appl Mater Interfaces 1(12):2747–2754

    Article  CAS  Google Scholar 

  23. Serpe MJ, Lyon LA (2004) Optical and acoustic studies of pH-dependent swelling in microgel thin films. Chem Mater 16(22):4373–4380

    Article  CAS  Google Scholar 

  24. Sorrell CD, Lyon LA (2007) Bimodal swelling responses in microgel thin films. J Phys Chem B 111(16):4060–4066

    Article  CAS  Google Scholar 

  25. Kleinen J, Klee A, Richtering W (2010) Influence of architecture on the interaction of negatively charged multisensitive poly(N-isopropylacrylamide)-co-methacrylic acid microgels with oppositely charged polyelectrolyte: absorption vs adsorption. Langmuir 26(13):11258–11265

    Article  CAS  Google Scholar 

  26. Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Preparation and characterization of Au colloid monolayers. Anal Chem 67(4):735–743

    Article  CAS  Google Scholar 

  27. Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103(40):8410–8426

    Article  CAS  Google Scholar 

  28. Dulkeith E, Morteani AC, Niedereichholz T, Klar TA, Feldmann J, Levi SA, van Veggel F, Reinhoudt DN, Moller M, Gittins DI (2002) Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects. Phys Rev Lett 89(20):203002

    Article  CAS  Google Scholar 

  29. Kozlovskaya V, Kharlampieva E, Khanal BP, Manna P, Zubarev ER, Tsukruk VV (2008) Ultrathin layer-by-layer hydrogels with incorporated gold nanorods as pH-sensitive optical materials. Chem Mater 20(24):7474–7485

    Article  CAS  Google Scholar 

  30. Matzelle TR, Geuskens G, Kruse N (2003) Elastic properties of poly(N-isopropylacrylamide) and poly(acrylamide) hydrogels studied by scanning force microscopy. Macromolecules 36(8):2926–2931

    Article  CAS  Google Scholar 

  31. Faber KT, Evans AG (1983) Crack deflection processes. 1. Theory. Acta Metall 31(4):565–576

    Article  Google Scholar 

  32. Kinloch AJ, Taylor AC (2002) The toughening of cyanate-ester polymers—part I—Physical modification using particles, fibres and woven-mats. J Mater Sci 37(3):433–460

    Article  CAS  Google Scholar 

  33. Daniels CA (1989) Polymers: structure and properties. Technomic Publishing, Lancaster

    Google Scholar 

  34. Wool RP (2008) Self-healing materials: a review. Soft Matter 4(3):400–418

    Article  CAS  Google Scholar 

  35. Kausch HH, Plummer CJG (1994) The role of individual chains in polymer deformation. Polymer 35(18):3848–3857

    Article  CAS  Google Scholar 

  36. Johnsen BB, Kinloch AJ, Mohammed RD, Taylor AC, Sprenger S (2007) Toughening mechanisms of nanoparticle-modified epoxy polymers. Polymer 48(2):530–541

    Article  CAS  Google Scholar 

  37. Serpe MJ, Jones CD, Lyon LA (2003) Layer-by-layer deposition of thermoresponsive microgel thin films. Langmuir 19(21):8759–8764

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge EmTechBio (LAL, CV, and ABS), the BK21 program (CWP and JDK), the China Scholarship Council (XH), and the TI:GER program at GT (ABS) for financial support of this project. A portion of this work was funded by NSF through the Georgia Tech MRSEC, contract DMR-0820382.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Andrew Lyon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, C.W., South, A.B., Hu, X. et al. Gold nanoparticles reinforce self-healing microgel multilayers. Colloid Polym Sci 289, 583–590 (2011). https://doi.org/10.1007/s00396-010-2353-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-010-2353-0

Keywords

Navigation