Skip to main content
Log in

Fabrication of multifunctional shell cross-linked micelles for targeting drug release

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Thermosensitive amphiphilic poly(N-acroyloxysuccinimide)-b-poly(N-isopropylacrylamide)-b-poly(ε-caprolactone) triblock copolymer was synthesized via the combination of reversible addition fragmentation chain transfer and ring-opening polymerization techniques. Shell cross-linked micelle (SCL) was further developed by the addition of cystamine as a di-functional cross-linker into the micellar solution. The persistence of regularly spherical shape against media change demonstrated locked micellar structure resulting from sufficient shell cross-linking. The lower critical solution temperature of the resulting SCL micelles was around 38 °C. The in vitro drug release study was carried out to illustrate the temperature-responsive drug release behaviors. To enhance the internalization to tumor cells, transferring (Tf) was further conjugated to the SCL micelles, and endocytosis experiments further confirmed the efficient uptake of Tf-SCL micelles by tumor cells, indicating that the Tf-SCL micelles would be a promising candidate for tumor-targeted drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Min KH, Kim JH, Bae SM, Shin H, Kim MS, Park S et al (2010) Tumoral acidic pH-responsive MPEG-poly(beta-amino ester) polymeric micelles for cancer targeting therapy. J Control Release 144:259–266

    Article  CAS  Google Scholar 

  2. Setua P, Pramanik R, Sarkar S, Ghatak C, Das SK, Sarkar N (2010) Synthesis of silver nanoparticle inside the nonaqueous ethylene glycol reverse micelle and a comparative study to show the effect of the nanoparticle on the reverse micellar aggregates through solvation dynamics and rotational relaxation measurements. J Phys Chem B 114:7557–7564

    Article  CAS  Google Scholar 

  3. Wei H, Cheng SX, Zhang XZ, Zhuo RX (2009) Thermo-sensitive polymeric micelles based on poly(N-isopropylacrylamide) as drug carriers. Pro Polym Sci 34:893–910

    Article  CAS  Google Scholar 

  4. Huang CK, Lo CL, Chen HH, Hsiue GH (2007) Multifunctional micelles for cancer cell targeting, distribution imaging, and anticancer drug delivery. Adv Funct Mater 17:2291–2297

    Article  CAS  Google Scholar 

  5. Quan CY, Chen JX, Wang HY, Li C, Chang C, Zhang XZ et al (2010) Core-shell nano-sized assemblies mediated by α-β cyclodextrin dimer with tumor-triggered targeting property. ACS Nano 4:4211–4219

    Article  CAS  Google Scholar 

  6. Torchilin VP (2008) Torchilin tat peptide-mediated intracellular delivery of pharmaceutical nanocarriers. Adv Drug Deliv Rev 60:548–558

    Article  CAS  Google Scholar 

  7. Wei H, Zhang XZ, Zhou Y, Cheng SX, Zhuo RX (2006) Self-assembled thermoresponsive micelles of poly(N-isopropylacrylamide-b-methyl methacrylate). Biomaterials 27:2028–2034

    Article  CAS  Google Scholar 

  8. Butun V, Lowe AB, Billingham NC, Armes SP (1999) Synthesis of zwitterionic shell cross-linked micelles. J Am Chem Soc 121:4288–4289

    Article  Google Scholar 

  9. Wooley KL (2000) Shell crosslinked polymer assemblies: nanoscale constructs inspired from biological systems. J Polymer Sci Polymer Chem 38:1397–1407

    CAS  Google Scholar 

  10. Chang C, Wei H, Feng J, Wang ZC, Wu XJ, Wu DQ et al (2009) Temperature and pH double responsive hybrid cross-linked micelles based on P(NIPAAm-co-MPMA)-b-P(DEA): RAFT synthesis and “schizophrenic” micellization. Macromolecules 42:4838–4844

    Article  CAS  Google Scholar 

  11. Wei H, Cheng C, Chang C, Chen WQ, Cheng SX, Zhang XZ et al (2008) Synthesis and applications of shell cross-linked thermoresponsive hybrid micelles based on poly(N-isopropylacrylamide-co-3-(trimethoxysilyl)propyl methacrylate)-b- poly(methyl methacrylate). Langmuir 24:4564–4570

    Article  CAS  Google Scholar 

  12. Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760

    Article  CAS  Google Scholar 

  13. Matsumoto S, Christie RJ, Nishiyama N, Miyata K, Ishii A, Oba M et al (2009) Environment-responsive block copolymer micelles with a disulfide cross-linked core for enhanced siRNA delivery. Biomacromolecules 10:119–127

    Article  CAS  Google Scholar 

  14. Ren Y, Wong SM, Lim LY (2007) Folic acid-conjugated protein cages of a plant virus: a novel delivery platform for doxorubicin. Bioconjugate Chem 18:836–843

    Article  CAS  Google Scholar 

  15. Sudimack J, Lee RJ (2000) Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 41:147–162

    Article  CAS  Google Scholar 

  16. Jasseron S, Contino-P’epin C, Maurizis JC, Rapp M, Pucci B (2003) In vitro and in vivo evaluations of THAM derived telomers bearing RGD and Ara-C for tumour neovasculature targeting. Eur J Med Chem 38:825–836

    Article  CAS  Google Scholar 

  17. Lestini BJ, Sagnella SM, Xu Z, Shive MS, Richter NJ, Jayaseharan J et al (2002) Surface modification of liposomes for selective cell targeting in cardiovascular drug delivery. J Control release 78:235–247

    Article  CAS  Google Scholar 

  18. Temming K, Meyer DL, Zabinski R, Senter PD, Poelstra K, Molema G et al (2007) Improved efficacy alpha(v)beta(6)-targeted albumin conjugates by conjugation of a novel auristatin derivative. Mol Pharm 4:686–694

    Article  CAS  Google Scholar 

  19. Kakudo T, Chaki S, Futaki S, Nakase I, Akaji K, Kawakami T et al (2004) Transferrin-modified liposomes equipped with a pH-sensitive fusogenic peptide: an artificial viral-like delivery system. Biochemistry 43:5618–5628

    Article  CAS  Google Scholar 

  20. Kobayashi T, Ishida T, Okada Y, Ise S, Harashima H, Kiwada H (2007) Effect of transferrin receptor-targeted liposomal doxorubicin in P-glycoprotein-mediated drug resistant tumor cells. Inter J Pharm 329:94–102

    Article  CAS  Google Scholar 

  21. Voinea M, Dragomir E, Manduteanu I, Simionescu M (2002) Binding and uptake of transferrin-bound liposomes targeted to transferrin receptors of endothelial cells. Vasc Pharm 39:13–20

    Article  CAS  Google Scholar 

  22. Zhang H, Mardyani S, Chan WCW, Kumacheva E (2006) Design of biocompatible chitosan microgels for targeted pH-mediated intracellular release of cancer therapeutics. Biomacromolecules 7:1568–1572

    Article  CAS  Google Scholar 

  23. Jiang YY, Liu C, Hong MH, Zhu SJ, Pei YY (2007) Tumor cell targeting of transferrin-PEG-TNF-alpha conjugate via a receptor-mediated delivery system: design, synthesis, and biological evaluation. Bioconjugate Chem 18:41–49

    Article  Google Scholar 

  24. Li HY, Qian ZM (2002) Transferrin/transferrin receptor-mediated drug delivery. Med Res Rev 22:225–250

    Article  CAS  Google Scholar 

  25. Miyajima Y, Nakamura H, Kuwata Y, Lee JD, Masunaga S, Ono K et al (2006) Transferrin-loaded nido-carborane liposomes: tumor-targeting boron delivery system for neutron capture therapy. Bioconjugate Chem 17:1314–1320

    Article  CAS  Google Scholar 

  26. Arias JL, Gallardo V, Ruiz MA, Delgado AV (2008) Magnetite/poly(alkylcyanoacrylate) (core/shell) nanoparticles as 5-fluorouracil delivery systems for active targeting. Eur J Pharm Biopharm 69:54–63

    Article  CAS  Google Scholar 

  27. Tan YC, Hettiarachchi K, Siu M, Pan YR, Lee AP (2006) Controlled microfluidic encapsulation of cells, proteins, and microbeads in lipid vesicles. J Am Chem Soc 128:5656–5658

    Article  CAS  Google Scholar 

  28. Yang PH, Sun X, Chiu JF, Sun H, He QY (2005) Transferrin-mediated gold nanoparticle cellular uptake. Bioconjugate Chem 16:494–496

    Article  CAS  Google Scholar 

  29. Solomon DH (2005) Genesis of the CSIRO polymer group and the discovery and significance of nitroxide-mediated living radical polymerization. J Polymer Sci Polymer Chem 43:5748–5764

    CAS  Google Scholar 

  30. Wang JS, Matyjaszewski K (1995) Controlled living polymerization-atom transfer radical polymerization in the presence of transition-metal complexs. J Am Chem Soc 117:5614–5615

    Article  CAS  Google Scholar 

  31. Chiefari J, Chong YK, Ercole F, Krstina J, Jeffery J, Le TPT et al (1998) Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules 31:5559–5562

    Article  CAS  Google Scholar 

  32. Barner-Kowollik C, Perrier S (2008) The future of reversible addition fragmentation chain transfer polymerization. J Polymer Sci Polymer Chem 46:5715–5723

    CAS  Google Scholar 

  33. Moad G, Rizzardo E, Thang SH (2006) Living radical polymerization by the RAFT process—a first update. Aust J Chem 59:669–692

    Article  CAS  Google Scholar 

  34. Perrier S, Takolpuckdee P (2005) Macromolecular design via reversible addition-fragmentation chain transfer (RAFT)/Xanthates (MADIX) polymerization. J Polymer Sci Polymer Chem 43:5347–5393

    CAS  Google Scholar 

  35. Liu F, Tao GL, Zhuo RX (1993) Synthesis of thermal phase-separating reactive polymers and their applications in immobilized enzymes. Polym J 25:561–567

    Article  CAS  Google Scholar 

  36. Quan CY, Wu DQ, Chang C, Zhang GB, Cheng SX, Zhang XZ et al (2009) Synthesis of thermo-sensitive micellar aggregates self-assembled from biotinylated PNAS-b-PNIPAAm-b-PCL triblock copolymers for tumor targeting. J Phys Chem C 113:11262–11267

    Article  CAS  Google Scholar 

  37. Lee ES, Kim D, Youn YS, Oh KT, Bae YH (2008) A novel virus-mimetic nanogel vehicle. Angew Chem Int Ed 47:2418–2421

    Article  CAS  Google Scholar 

  38. Oh JK, Siegwart DJ, Lee H, Sherwood G, Peteanu L, Hollinger JO et al (2007) Biodegradable nanogels prepared by atom transfer radical polymerization as potential drug delivery carriers: synthesis, biodegradation, in vitro release, and bioconjugation. J Am Chem Soc 129:5939–5945

    Article  CAS  Google Scholar 

  39. Khandare J, Kolhe P, Pillai O, Kannan S, Lieh-Lai M, Kannan RM (2005) Synthesis, cellular transport and activity of PAMAM dendrimer-methylprednisolone conjugates. Bioconjugate Chem 16:330–337

    Article  CAS  Google Scholar 

  40. Li YT, Lokitz BS, McCormick CL (2006) RAFT Synthesis of a thermally responsive ABC triblock copolymer incorporating N-acryloxysuccinimide for facile in situ formation of shell cross-linked micelles in aqueous media. Macromolecules 39:81–89

    Article  CAS  Google Scholar 

  41. Zhang JY, Jiang XZ, Zhang YF, Li YT, Liu SY (2007) Facile fabrication of reversible core cross-linked micelles possessing thermosensitive swellability. Macromolecules 40:9125–9132

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (20974083), Ministry of Science and Technology of China (2009CB930300) and Natural Science Foundation of Hubei Province, China (2009CDA024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Zheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quan, CY., Wei, H., Shi, Y. et al. Fabrication of multifunctional shell cross-linked micelles for targeting drug release. Colloid Polym Sci 289, 667–675 (2011). https://doi.org/10.1007/s00396-010-2337-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-010-2337-0

Keywords

Navigation