Abstract
Thermoresponsive core-shell hybrid microgels with different core sizes were prepared by radical precipitation polymerization of the monomer N-isopropylacrylamide (NIPAM) in the presence of functionalized silica cores. The size of the cores was varied in a range of 70–170 nm in diameter. Characterization of the hybrid microgels was done by means of imaging techniques such as transmission electron microscopy (TEM) and atomic force microscopy (AFM). In addition, scattering techniques were used to study the swelling behavior and network structure of the responsive polymer shells. While dynamic light scattering (DLS) was employed to investigate the overall particle dimensions, SANS allowed to determine the correlation length ξ of the polymer network. Additionally, SANS also provides the average core size and the polydispersity of the cores in-situ using the method of contrast variation.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Karg M, Pastoriza-Santos I, Liz-Marzan LM, Hellweg T (2006) A versatile approach for the preparation of thermosensitive PNIPAM core-shell microgels with nanoparticle cores. Chem Phys Chem 7:2298–2301
Karg M, Wellert S, Pastoriza-Santos I, Lapp A, Liz-Marzán LM, Hellweg T (2008) Poly(N-isopropylacrylamide) microgels with silica nanoparticle core: the volume phase transition/collapse of the polymer shell as seen by small angle neutron scattering and dynamic light scattering. Phys Chem Chem Phys 10:6708–6716
Gilanyi T, Varga I, Meszaros R, Filipcsei G, Zrinyi M (2000) Characterisation of monodisperse poly(N-isopropylacrylamide) microgel particles. Phys Chem Chem Phys 2:1973–1977
Debord JD, Lyon LA (2000) Thermoresponsive photonic crystals. J Phys Chem B 104(27):6327–6331
Hellweg Th, Dewhurst CD, Brückner E, Kratz K, Eimer W (2000) Colloidal crystals made of PNIPA-microgel particles. Colloid Polym Sci 278(10):972–978
Wu J, Zhou B, Hu Z (2003) Phase behavior of thermally responsive microgel colloids. Phys Rev Lett 90(4):048304/1–4
McGrath JG, Bock RD, Cathcart JM, Lyon LA (2007) Self-assembly of “paint-on” colloidal crystals using poly(styrene-co-N-isopropylacrylamide) spheres. Chem Matter 19:1584–1591
StJohn Iyer A, Lyon LA (2009) Self-healing colloidal crystals. Angew Chem (Int Ed) 48:4562–4566
Zhou M, Xing F, Ren M, Feng Y, Zhao Y, Qiu H, Wang X, Gao C, Sun F, He Y, Ma an Pu Wen Z, Gao J (2009) A facile method to assemble PNIPAM-containing microgel photonic crystals. Chem Phys Chem 10:523–526
Hellweg T (2009) Towards large scale photonic crystals with tuneable band gap. Angew Chemie (Int Ed) 48:6777–6778
Contreras-Cáceres R, Sánchez-Iglesias A, Karg M, Pastoriza-Santos I, Pérez-Juste J, Pacifico J, Hellweg T, Fernández-Barbero A, Liz-Marzán LM (2008) Encapsulation and growth of gold nanoparticles in thermoresponsive microgels. Adv Mater 20:1666–1670
Sanchez-Iglesias A, Grzelczak M, Rodriguez-Gonzalez B, Guardia-Giros P, Pastoriza-Santos I, Perez-Juste J, Prato M, Liz-Marzan LM (2009) Synthesis of multifunctional composite microgels via in situ Ni growth on PNIPAM-coated Au nanoparticles. ACS Nano 3:3184–3190
Pelton R (2000) Temperature-sensitive aqueous microgels. Adv Colloid Interface Sci 85:1–33
Nayak S, Lyon LA (2005) Soft nanotechnology with soft nanoparticles. Angew Chem (Int Ed) 44:7686–7708
Das M, Zhang H, Kumacheva E (2006) Microgels: old materials with new applications. Annu Rev Mater Res 36:117–142
Meng Z, Smith MH, Lyon LA (2009) Temperature-programmed synthesis of micron-sized multi-responsive microgels. Colloid Polym Sci 287:277–285
Senff H, Richtering W (1999) Temperature sensitive microgel suspensions: colloidal phase behavior and rheology. J Chem Phys 111(4):1705–1711
Ballauff M (2007) Spherical polyelectrolyte brushes. Prog Polym Sci 32:1135–1151
Kratz K, Hellweg Th, Eimer W (2001) Structural changes in PNIPA microgel particles as seen by SANS, DLS, and EM techniques. Polymer 42(15):6531–6539
Hoare T, Pelton R (2004) Highly pH and temperature responsive microgels functionalized with vinylacetic acid. Macromolecules 37:2544–2550
Kratz K, Hellweg Th, Eimer W (2000) Influence of charge density on the swelling of colloidal poly(N-isopropylacrylamide-co-acrylic acid) microgels. Colloids Surf A 170(2–3):137–149
Karg M, Pastoriza-Santos I, Rodriguez-González B, von Klitzing R, Wellert S, Hellweg T (2008) Temperature, pH, and ionic strength induced changes of the swelling behavior of PNIPAM-poly(allylacetic acid) copolymer microgels. Langmuir 24(12):6300–6306
Höfl S, Zitzler L, Hellweg T, Herminghaus S, Mugele F (2007) Volume phase transition of smart microgels in bulk solution and adsorbed at an interface: a combined AFM, dynamic light, and small angle neutron scattering study. Polymer 48:245–254
Lally S, Bird R, Freemont TJ, Saunders BR (2009) Microgels containing methacrylic acid: effects of composition on ph-triggered swelling and gelation behavioursx c. Colloid Polym Sci 287:335–343
Zhou S, Chu B (1998) Synthesis and volume phase transition of poly(methacrylic-co-N-isopropylacrylamide) microgel particles in water. J Phys Chem B 102:1364–1371
Tanaka T, Fillmore DJ (1979) Kinetics of swelling of gels. J Chem Phys 70(3):1214–1218
Bradley M, Ramos J, Vincent B (2005) Equilibrium and kinetic aspects of the uptake of poly(etylene oxide) by copolymer microgel particles of N-iospropylacrylamide and acrylic acid. Langmuir 21:1209–1215
Pich AZ, Adler H-JP (2007) Composite aqueous microgels: an overview of recent advances in synthesis, characterization and application. Polym Int 56:291–307
Schmidt AM (2007) Thermoresponsive magnetic colloids. Colloid Polym Sci 285:953–966
Karg M, Hellweg T (2009) New smart poly(NIPAM) microgels and nanoparticle microgel hybrids: properties and advances in characterisation. Curr Opin Colloid Interface Sci 14:438–450
Karg M, Hellweg T (2009) Smart inorganic/organic hybrid microgels: synthesis and characterisation. J Mater Chem 19:8714–8715
Lu Y, Mei Y, Ballauff M, Drechsler M (2006) Thermoresponsive core-shell particles as carrier systems for metallic nanoparticles. J Phys Chem B 110:3930–3937
Mei Y, Lu Y, Polzer F, Ballauff M, Drechsler M (2007) Catalytic activity of palladium nanoparticles encapsulated in spherical polyelectrolyte brushes and core-shell microgels. Chem Mater 19:1062–1069
Karg M, Pastoriza-Santos I, Perez-Juste J, Hellweg T, Liz-Marzan LM (2007) Nanorod-coated PNIPAM microgels: thermoresponsive optical properties. Small 3(7):1222–1229
Karg M, Lu Y, Carbó-Argibay E, Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán LM (2009) Multi-responsive hybrid colloids based on gold nanorods and poly(NIPAM-co-allyl-acetic acid) microgels: temperature- and pH-tunable plasmon resonance. Langmuir 25:3163–3167
Álvarez-Puebla RA, Contreras-Cáceres R, Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán LM (2009) Au@PNIPAM colloids as molecular traps for surface-enhanced, spectroscopic, ultra-sensitive analysis. Angew Chem (Int Ed) 48:138–143
Das M, Sanson N, Fava D, Kumacheva E (2007) Microgels loaded with gold nanorods: photothermally triggered volume phase transition under physiological conditions. Langmuir 23:196–201
Wong JE, Gaharwar AK, Müller-Schulte D, Bahadur D, Richtering W (2008) Dual-stimuli responsive pnipam microgel achieved via layer-by-layer assembly: magnetic and thermoresponsive. J Colloid Interface Sci 324:47–54
Jones CD, Serpe MJ, Schroeder L, Lyon LA (2003) Microlens formation in microgel/gold colloid composite materials via photothermal patterning. J Am Chem Soc 125(18):5292–5293
Kim DJ, Kang SM, Kong B, Kim W-J, Paik H-J, Choi IS (2005) Formation of thermoresponsive gold nanoparticle/PNIPAam hybrids by surface-initiated, atom transfer radical polymerization in aqueous media. Macromol Chem Phys 206:1941–1946
Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in micron size range. J Colloid Interface Sci 26:62–69
Reculusa S, Mignotaud C, Bourgeat-Lami E, Duguet E, Ravine S (2004) Synthesis of daisy-shaped and multipod-like silica/polystyrene nanocomposites. Nano Lett 4:1677–1682
Westcott SL, Oldenburg SJ, Lee TR, Halas NJ (1998) Formation and adsorption of clusters of gold nanoparticles onto functionalized silica nanoparticle surfaces. Langmuir 14:5396–5401
Horcas I, Fernández R, Gómez-Rodríguez JM, Colchero J, Gómez-Herrero J, Baro AM (2007) WSxM: a software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum 78:013705
Provencher SW (1982) A constrained regularization method for inverting data represented by linear algebraic or integral equations. Comput Phys Commun 27:213–217
Provencher SW (1982) Contin: a general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Comput Phys Commun 27:229–242
Kratz K, Lapp A, Eimer W, Hellweg T (2002) Volume phase transition and structure of tregdma, egdma, and bis cross-linked pnipa microgels: a small angle neutron and dynamic light scattering study. Colloids Surf A 197(1–3):55–67
Crowther HM, Saunders BR, Mears SJ, Cosgrove T, Vincent B, King SM, Yu G-E (1999) Poly(NIPAM) microgel particle de-swelling: a light scattering and small-angle neutron scattering study. Colloids Surf A Physicochem Eng Asp 152:327–333
Fernandez-Barbero A, Fernandez-Nieves A, Grillo I, Lopez-Cabarcos E (2002) Structural modifications in the swelling of inhomogeneous microgels by light and neutron scattering. Phys Rev E 66(5):051803/1–10
Stieger M, Richtering W, Pedersen JS, Lindner P (2004) Small-angle neutron scattering study of structural changes in temperature sensitive microgel colloid. J Chem Phys 120(13):6197–6206
Shibayama M, Tanaka T, Han CC (1992) Small angle neutron scattering study on poly(N-isopropyl acrylamide) gels near their volume-phase transition. J Chem Phys 97(9):6829–6841
Shibayama M, Tanaka T, Han CC (1992) Small-angle neutron scattering study on weakly charged temperature sensitive polymer gels. J Chem Phys 97(9):6842–6854
Geisler E, Horkay F, Hecht A-M (1993) Scattering from network polydispersity in polymer gels. Phys Rev Lett 71(4):645–648
Mears SJ, Deng Y, Cosgrove T, Pelton R (1997) Structure of sodium dodecyl sulfate bound to a poly(NIPAM) microgel particle. Langmuir 13:1901
Dewhurst C (2003) Graphical reduction and analysis SANS program for MatlabTM
Kohlbrecher J (2008) SASfit: a program for fitting simple structural models to small angle scattering data. Paul Scherrer Institut, Laboratory for Neutron Scattering, CH-5232 Villigen, Switzerland
Burchard W, Richtering W (1989) Dynamic light scattering from polymer solutions. Prog. Colloid Polym Sci 80:151–163
Dingenouts N, Seelenmeyer S, Deike I, Rosenfeldt S, Ballauff M, Lindner P, Narayanan T (2001) Analysis of thermosensitive core-shell colloids by small-angle neutron scattering including contrast variation. Phys Chem Chem Phys 3:1169–1174
Seelenmeyer S, Deike I, Rosenfeldt S, Norhausen C, Dingenouts N, Ballauff M, Narayanan T, Lindner P (2001) Small-angle x-ray and neutron scattering studies of the volume phase transition in thermosensitive core-shell colloids. J Chem Phys 114(23):10471–10478
Acknowledgements
This work has been supported by the Deutsche Forschungsgemeinschaft through the priority program SPP 1259 and within the framework of the SFB840 (TP A4). M.K. is grateful to the Alexander von Humboldt foundation for a Feodor Lynen research fellowship.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Karg, M., Wellert, S., Prevost, S. et al. Well defined hybrid PNIPAM core-shell microgels: size variation of the silica nanoparticle core. Colloid Polym Sci 289, 699–709 (2011). https://doi.org/10.1007/s00396-010-2327-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00396-010-2327-2