Skip to main content
Log in

Well defined hybrid PNIPAM core-shell microgels: size variation of the silica nanoparticle core

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Thermoresponsive core-shell hybrid microgels with different core sizes were prepared by radical precipitation polymerization of the monomer N-isopropylacrylamide (NIPAM) in the presence of functionalized silica cores. The size of the cores was varied in a range of 70–170 nm in diameter. Characterization of the hybrid microgels was done by means of imaging techniques such as transmission electron microscopy (TEM) and atomic force microscopy (AFM). In addition, scattering techniques were used to study the swelling behavior and network structure of the responsive polymer shells. While dynamic light scattering (DLS) was employed to investigate the overall particle dimensions, SANS allowed to determine the correlation length ξ of the polymer network. Additionally, SANS also provides the average core size and the polydispersity of the cores in-situ using the method of contrast variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Karg M, Pastoriza-Santos I, Liz-Marzan LM, Hellweg T (2006) A versatile approach for the preparation of thermosensitive PNIPAM core-shell microgels with nanoparticle cores. Chem Phys Chem 7:2298–2301

    CAS  Google Scholar 

  2. Karg M, Wellert S, Pastoriza-Santos I, Lapp A, Liz-Marzán LM, Hellweg T (2008) Poly(N-isopropylacrylamide) microgels with silica nanoparticle core: the volume phase transition/collapse of the polymer shell as seen by small angle neutron scattering and dynamic light scattering. Phys Chem Chem Phys 10:6708–6716

    Article  CAS  Google Scholar 

  3. Gilanyi T, Varga I, Meszaros R, Filipcsei G, Zrinyi M (2000) Characterisation of monodisperse poly(N-isopropylacrylamide) microgel particles. Phys Chem Chem Phys 2:1973–1977

    Article  CAS  Google Scholar 

  4. Debord JD, Lyon LA (2000) Thermoresponsive photonic crystals. J Phys Chem B 104(27):6327–6331

    Article  CAS  Google Scholar 

  5. Hellweg Th, Dewhurst CD, Brückner E, Kratz K, Eimer W (2000) Colloidal crystals made of PNIPA-microgel particles. Colloid Polym Sci 278(10):972–978

    Article  CAS  Google Scholar 

  6. Wu J, Zhou B, Hu Z (2003) Phase behavior of thermally responsive microgel colloids. Phys Rev Lett 90(4):048304/1–4

    Article  Google Scholar 

  7. McGrath JG, Bock RD, Cathcart JM, Lyon LA (2007) Self-assembly of “paint-on” colloidal crystals using poly(styrene-co-N-isopropylacrylamide) spheres. Chem Matter 19:1584–1591

    Article  CAS  Google Scholar 

  8. StJohn Iyer A, Lyon LA (2009) Self-healing colloidal crystals. Angew Chem (Int Ed) 48:4562–4566

    Article  Google Scholar 

  9. Zhou M, Xing F, Ren M, Feng Y, Zhao Y, Qiu H, Wang X, Gao C, Sun F, He Y, Ma an Pu Wen Z, Gao J (2009) A facile method to assemble PNIPAM-containing microgel photonic crystals. Chem Phys Chem 10:523–526

    CAS  Google Scholar 

  10. Hellweg T (2009) Towards large scale photonic crystals with tuneable band gap. Angew Chemie (Int Ed) 48:6777–6778

    Article  CAS  Google Scholar 

  11. Contreras-Cáceres R, Sánchez-Iglesias A, Karg M, Pastoriza-Santos I, Pérez-Juste J, Pacifico J, Hellweg T, Fernández-Barbero A, Liz-Marzán LM (2008) Encapsulation and growth of gold nanoparticles in thermoresponsive microgels. Adv Mater 20:1666–1670

    Article  Google Scholar 

  12. Sanchez-Iglesias A, Grzelczak M, Rodriguez-Gonzalez B, Guardia-Giros P, Pastoriza-Santos I, Perez-Juste J, Prato M, Liz-Marzan LM (2009) Synthesis of multifunctional composite microgels via in situ Ni growth on PNIPAM-coated Au nanoparticles. ACS Nano 3:3184–3190

    Article  CAS  Google Scholar 

  13. Pelton R (2000) Temperature-sensitive aqueous microgels. Adv Colloid Interface Sci 85:1–33

    Article  CAS  Google Scholar 

  14. Nayak S, Lyon LA (2005) Soft nanotechnology with soft nanoparticles. Angew Chem (Int Ed) 44:7686–7708

    Article  CAS  Google Scholar 

  15. Das M, Zhang H, Kumacheva E (2006) Microgels: old materials with new applications. Annu Rev Mater Res 36:117–142

    Article  CAS  Google Scholar 

  16. Meng Z, Smith MH, Lyon LA (2009) Temperature-programmed synthesis of micron-sized multi-responsive microgels. Colloid Polym Sci 287:277–285

    Article  CAS  Google Scholar 

  17. Senff H, Richtering W (1999) Temperature sensitive microgel suspensions: colloidal phase behavior and rheology. J Chem Phys 111(4):1705–1711

    Article  CAS  Google Scholar 

  18. Ballauff M (2007) Spherical polyelectrolyte brushes. Prog Polym Sci 32:1135–1151

    Article  CAS  Google Scholar 

  19. Kratz K, Hellweg Th, Eimer W (2001) Structural changes in PNIPA microgel particles as seen by SANS, DLS, and EM techniques. Polymer 42(15):6531–6539

    Article  Google Scholar 

  20. Hoare T, Pelton R (2004) Highly pH and temperature responsive microgels functionalized with vinylacetic acid. Macromolecules 37:2544–2550

    Article  CAS  Google Scholar 

  21. Kratz K, Hellweg Th, Eimer W (2000) Influence of charge density on the swelling of colloidal poly(N-isopropylacrylamide-co-acrylic acid) microgels. Colloids Surf A 170(2–3):137–149

    Article  CAS  Google Scholar 

  22. Karg M, Pastoriza-Santos I, Rodriguez-González B, von Klitzing R, Wellert S, Hellweg T (2008) Temperature, pH, and ionic strength induced changes of the swelling behavior of PNIPAM-poly(allylacetic acid) copolymer microgels. Langmuir 24(12):6300–6306

    Article  CAS  Google Scholar 

  23. Höfl S, Zitzler L, Hellweg T, Herminghaus S, Mugele F (2007) Volume phase transition of smart microgels in bulk solution and adsorbed at an interface: a combined AFM, dynamic light, and small angle neutron scattering study. Polymer 48:245–254

    Article  Google Scholar 

  24. Lally S, Bird R, Freemont TJ, Saunders BR (2009) Microgels containing methacrylic acid: effects of composition on ph-triggered swelling and gelation behavioursx c. Colloid Polym Sci 287:335–343

    Article  CAS  Google Scholar 

  25. Zhou S, Chu B (1998) Synthesis and volume phase transition of poly(methacrylic-co-N-isopropylacrylamide) microgel particles in water. J Phys Chem B 102:1364–1371

    Article  CAS  Google Scholar 

  26. Tanaka T, Fillmore DJ (1979) Kinetics of swelling of gels. J Chem Phys 70(3):1214–1218

    Article  CAS  Google Scholar 

  27. Bradley M, Ramos J, Vincent B (2005) Equilibrium and kinetic aspects of the uptake of poly(etylene oxide) by copolymer microgel particles of N-iospropylacrylamide and acrylic acid. Langmuir 21:1209–1215

    Article  CAS  Google Scholar 

  28. Pich AZ, Adler H-JP (2007) Composite aqueous microgels: an overview of recent advances in synthesis, characterization and application. Polym Int 56:291–307

    Article  CAS  Google Scholar 

  29. Schmidt AM (2007) Thermoresponsive magnetic colloids. Colloid Polym Sci 285:953–966

    Article  CAS  Google Scholar 

  30. Karg M, Hellweg T (2009) New smart poly(NIPAM) microgels and nanoparticle microgel hybrids: properties and advances in characterisation. Curr Opin Colloid Interface Sci 14:438–450

    Article  CAS  Google Scholar 

  31. Karg M, Hellweg T (2009) Smart inorganic/organic hybrid microgels: synthesis and characterisation. J Mater Chem 19:8714–8715

    Article  CAS  Google Scholar 

  32. Lu Y, Mei Y, Ballauff M, Drechsler M (2006) Thermoresponsive core-shell particles as carrier systems for metallic nanoparticles. J Phys Chem B 110:3930–3937

    Article  CAS  Google Scholar 

  33. Mei Y, Lu Y, Polzer F, Ballauff M, Drechsler M (2007) Catalytic activity of palladium nanoparticles encapsulated in spherical polyelectrolyte brushes and core-shell microgels. Chem Mater 19:1062–1069

    Article  CAS  Google Scholar 

  34. Karg M, Pastoriza-Santos I, Perez-Juste J, Hellweg T, Liz-Marzan LM (2007) Nanorod-coated PNIPAM microgels: thermoresponsive optical properties. Small 3(7):1222–1229

    Article  CAS  Google Scholar 

  35. Karg M, Lu Y, Carbó-Argibay E, Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán LM (2009) Multi-responsive hybrid colloids based on gold nanorods and poly(NIPAM-co-allyl-acetic acid) microgels: temperature- and pH-tunable plasmon resonance. Langmuir 25:3163–3167

    Article  CAS  Google Scholar 

  36. Álvarez-Puebla RA, Contreras-Cáceres R, Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán LM (2009) Au@PNIPAM colloids as molecular traps for surface-enhanced, spectroscopic, ultra-sensitive analysis. Angew Chem (Int Ed) 48:138–143

    Article  Google Scholar 

  37. Das M, Sanson N, Fava D, Kumacheva E (2007) Microgels loaded with gold nanorods: photothermally triggered volume phase transition under physiological conditions. Langmuir 23:196–201

    Article  CAS  Google Scholar 

  38. Wong JE, Gaharwar AK, Müller-Schulte D, Bahadur D, Richtering W (2008) Dual-stimuli responsive pnipam microgel achieved via layer-by-layer assembly: magnetic and thermoresponsive. J Colloid Interface Sci 324:47–54

    Article  CAS  Google Scholar 

  39. Jones CD, Serpe MJ, Schroeder L, Lyon LA (2003) Microlens formation in microgel/gold colloid composite materials via photothermal patterning. J Am Chem Soc 125(18):5292–5293

    Article  CAS  Google Scholar 

  40. Kim DJ, Kang SM, Kong B, Kim W-J, Paik H-J, Choi IS (2005) Formation of thermoresponsive gold nanoparticle/PNIPAam hybrids by surface-initiated, atom transfer radical polymerization in aqueous media. Macromol Chem Phys 206:1941–1946

    Article  CAS  Google Scholar 

  41. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in micron size range. J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  42. Reculusa S, Mignotaud C, Bourgeat-Lami E, Duguet E, Ravine S (2004) Synthesis of daisy-shaped and multipod-like silica/polystyrene nanocomposites. Nano Lett 4:1677–1682

    Article  CAS  Google Scholar 

  43. Westcott SL, Oldenburg SJ, Lee TR, Halas NJ (1998) Formation and adsorption of clusters of gold nanoparticles onto functionalized silica nanoparticle surfaces. Langmuir 14:5396–5401

    Article  CAS  Google Scholar 

  44. Horcas I, Fernández R, Gómez-Rodríguez JM, Colchero J, Gómez-Herrero J, Baro AM (2007) WSxM: a software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum 78:013705

    Article  CAS  Google Scholar 

  45. Provencher SW (1982) A constrained regularization method for inverting data represented by linear algebraic or integral equations. Comput Phys Commun 27:213–217

    Article  Google Scholar 

  46. Provencher SW (1982) Contin: a general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Comput Phys Commun 27:229–242

    Article  Google Scholar 

  47. Kratz K, Lapp A, Eimer W, Hellweg T (2002) Volume phase transition and structure of tregdma, egdma, and bis cross-linked pnipa microgels: a small angle neutron and dynamic light scattering study. Colloids Surf A 197(1–3):55–67

    Article  CAS  Google Scholar 

  48. Crowther HM, Saunders BR, Mears SJ, Cosgrove T, Vincent B, King SM, Yu G-E (1999) Poly(NIPAM) microgel particle de-swelling: a light scattering and small-angle neutron scattering study. Colloids Surf A Physicochem Eng Asp 152:327–333

    Article  CAS  Google Scholar 

  49. Fernandez-Barbero A, Fernandez-Nieves A, Grillo I, Lopez-Cabarcos E (2002) Structural modifications in the swelling of inhomogeneous microgels by light and neutron scattering. Phys Rev E 66(5):051803/1–10

    Article  Google Scholar 

  50. Stieger M, Richtering W, Pedersen JS, Lindner P (2004) Small-angle neutron scattering study of structural changes in temperature sensitive microgel colloid. J Chem Phys 120(13):6197–6206

    Article  CAS  Google Scholar 

  51. Shibayama M, Tanaka T, Han CC (1992) Small angle neutron scattering study on poly(N-isopropyl acrylamide) gels near their volume-phase transition. J Chem Phys 97(9):6829–6841

    Article  CAS  Google Scholar 

  52. Shibayama M, Tanaka T, Han CC (1992) Small-angle neutron scattering study on weakly charged temperature sensitive polymer gels. J Chem Phys 97(9):6842–6854

    Article  CAS  Google Scholar 

  53. Geisler E, Horkay F, Hecht A-M (1993) Scattering from network polydispersity in polymer gels. Phys Rev Lett 71(4):645–648

    Article  Google Scholar 

  54. Mears SJ, Deng Y, Cosgrove T, Pelton R (1997) Structure of sodium dodecyl sulfate bound to a poly(NIPAM) microgel particle. Langmuir 13:1901

    Article  CAS  Google Scholar 

  55. Dewhurst C (2003) Graphical reduction and analysis SANS program for MatlabTM

  56. Kohlbrecher J (2008) SASfit: a program for fitting simple structural models to small angle scattering data. Paul Scherrer Institut, Laboratory for Neutron Scattering, CH-5232 Villigen, Switzerland

  57. Burchard W, Richtering W (1989) Dynamic light scattering from polymer solutions. Prog. Colloid Polym Sci 80:151–163

    Article  CAS  Google Scholar 

  58. Dingenouts N, Seelenmeyer S, Deike I, Rosenfeldt S, Ballauff M, Lindner P, Narayanan T (2001) Analysis of thermosensitive core-shell colloids by small-angle neutron scattering including contrast variation. Phys Chem Chem Phys 3:1169–1174

    Article  CAS  Google Scholar 

  59. Seelenmeyer S, Deike I, Rosenfeldt S, Norhausen C, Dingenouts N, Ballauff M, Narayanan T, Lindner P (2001) Small-angle x-ray and neutron scattering studies of the volume phase transition in thermosensitive core-shell colloids. J Chem Phys 114(23):10471–10478

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Deutsche Forschungsgemeinschaft through the priority program SPP 1259 and within the framework of the SFB840 (TP A4). M.K. is grateful to the Alexander von Humboldt foundation for a Feodor Lynen research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Hellweg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karg, M., Wellert, S., Prevost, S. et al. Well defined hybrid PNIPAM core-shell microgels: size variation of the silica nanoparticle core. Colloid Polym Sci 289, 699–709 (2011). https://doi.org/10.1007/s00396-010-2327-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-010-2327-2

Keywords

Navigation