Skip to main content
Log in

Swelling behaviour of PNIPAM-polyisoprene core-shell microgels at surface

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Poly(N-isopropylacrylamide) (PNIPAM)-based microgels covered with hydrophobic but water-permeable shell were used for modification of a hydrophilic substrate with the aim to provide a ‘contraphilic’ wetting behaviour, namely, to make the surface more hydrophobic in water environment (polar medium) than in dry state in air (non-polar medium). Bottom-up approach has been applied for a stepwise preparation of a structured two-component surface. Loosely packed microgels self-organised into quasiperiodic arrays were chemically grafted to the hydrophilic, functionalised substrate. Afterwards, a surface-initiated polymerisation of isoprene was performed selectively from microgels making them hydrophobic. The surface was found to be water-sensitive, as observed by in situ AFM measurements. The surface fraction of the hydrophobic component increased from 13% in the dry state up to 25% in water due to swelling of the microgels. However, small contraphilic effect was recorded by water contact angle measurements because of a moderate lateral swelling of the core-shell microgels and due to a fast swelling of the microgels already upon the measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Schmaljohann D, Oswald J, Jørgensen B, Nitschke M, Beyerlein D, Werner C (2003) Thermo-responsive PNiAAm-g-PEG films for controlled cell detachment. Biomacromolecules 4:1733–1739

    Article  CAS  Google Scholar 

  2. Hoare T, Pelton R (2007) Engineering glucose swelling responses in poly(N-isopropylacrylamide)-based microgels. Macromolecules 40:670–678

    Article  CAS  Google Scholar 

  3. Thies C (1996) In: Benita S (ed) Drugs and the pharmaceutical sciences, vol 73. Marcel Dekker, New York

    Google Scholar 

  4. Chen CW, Chen MQ, Serizawa T, Akashi M (1998) In situ synthesis and the catalytic properties of platinum colloids on polystyrene microspheres with surface-grafted poly(N-isopropylacrylamide). Chem Commun 7:831–832

    Article  Google Scholar 

  5. Das M, Zhang H, Kumacheva E (2006) Microgels: old materials with new applications. Annu Rev Mater Res 36:117–142

    Article  CAS  Google Scholar 

  6. Suzuki D, McGrath JG, Kawaguchi H, Lyon LA (2007) Colloidal crystals of thermosensitive, core/shell hybrid microgels. J Phys Chem C 111:5667–5672

    Article  CAS  Google Scholar 

  7. Zhang G, Wang D, Gu ZZ, Hartmann J, Möhwald H (2005) Two-dimensional non-close-packing arrays derived from self-assembly of biomineralized hydrogel spheres and their patterning applications. Chem Mater 17:5268–5274

    Article  CAS  Google Scholar 

  8. Jiang P, McFariand MJ (2005) Wafer-scale periodic nanohole arrays templated from two-dimensional nonclose-packed colloidal crystals. J Am Chem Soc 127:3710–3711

    Article  CAS  Google Scholar 

  9. Retsos H, Gorodyska G, Kiriy A, Stamm M, Creton C (2005) Adhesion between chemically heterogeneous switchable polymeric brushes and an elastomeric adhesive. Langmuir 21:7722–7725

    Article  CAS  Google Scholar 

  10. Retsos H, Senkovskyy V, Kiriy A, Stamm M, Feldstein M, Creton C (2006) Controlling tack with bicomponent polymer brushes. Adv Mater 18:2624–2628

    Article  CAS  Google Scholar 

  11. Ruckenstein E, Lee SHJ (1987) Surface restructuring of polymers. Colloid Interface Sci 120:529–536

    Article  Google Scholar 

  12. Lee SH, Ruckenstein EJ (1987) Stability of polymeric surfaces subjected to ultraviolet irradiation. Colloid Interface Sci 117:172–178

    Article  CAS  Google Scholar 

  13. Hopken J, Moller M (1992) On the morphology of (perfluoroalkyl)alkanes. Macromolecules 25:2482–2489

    Article  CAS  Google Scholar 

  14. Vaidya A, Chaudhury MK (2002) Synthesis and surface properties of environmentally responsive segmented polyurethanes. J Colloid Interface Sci 249:235–245

    Article  CAS  Google Scholar 

  15. Senshu K, Yamashita Sh, Mori H, Ito M, Hirao A, Nakahama S (1999) Time-resolved surface rearrangements of poly(2-hydroxyethyl methacrylate-block-isoprene) in response to environmental changes. Langmuir 15:1754–1762

    Article  CAS  Google Scholar 

  16. Mori H, Hirao A, Nakahama S, Senshu K (1994) Synthesis and characterization of hydrophilic hydrophobic block-copolymers containing poly(2.3-dihydroxypropyl methacrylate). Macromolecules 27:4093–4100

    Article  CAS  Google Scholar 

  17. Pientka Z, Oike H, Tezuka Y (1999) Atomic force microscopy study of environmental responses on poly(vinyl alcohol)-graft-polystyrene surfaces. Langmuir 15:3197–3201

    Article  CAS  Google Scholar 

  18. Minko S, Muller M, Motornov M, Nitschke M, Grundke K, Stamm M (2003) Two-level structured self-adaptive surfaces with reversibly tunable properties. J Am Chem Soc 125:3896–3900

    Article  CAS  Google Scholar 

  19. Senkovskyy V, Khanduyeva N, Komber H, Oertel U, Stamm M, Kuckling D, Kiriy A (2007) Conductive polymer brushes of regioregular head-to-tail poly(3-alkylthiophenes) via catalyst-transfer surface-initiated polycondensation. J Am Chem Soc 129:6626–6632

    Article  CAS  Google Scholar 

  20. Senkovskyy V, Tkachov R, Beryozkina T, Komber H, Oertel U, Horecha M, Bocharova V, Stamm M, Gevorgyan SA, Krebs FC, Kiriy A (2009) “Hairy” poly(3-hexylthiophene) particles prepared via surface-initiated kumada catalyst-transfer polycondensation. J Am Chem Soc 131:16445–16453

    Article  CAS  Google Scholar 

  21. Hemmerle J, Roucoules V, Fleith G, Nardin M, Ball V, Lavalle P, Marie P, Voegel JC, Schaaf P (2005) Mechanically responsive films of variable hydrophobicity made of polyelectrolyte multilayers. Langmuir 21:10328–10331

    Article  CAS  Google Scholar 

  22. Tamber H, Johansen P, Merkle HP, Gander B (2005) Formulation aspects of biodegradable polymeric microspheres for antigen delivery. Adv Drug Deliv Rev 57:357–376

    Article  CAS  Google Scholar 

  23. Hammer DA, Discher DE (2001) Synthetic cells—self-assembling polymer membranes and bioadhesive colloids. Annu Rev Mater Sci 31:387–404

    Article  CAS  Google Scholar 

  24. Tsukruk V, Luzinov I, Larson K, Li S, McGrath DV (2001) Intralayer reorganization of photochromic molecular films. J Mater Sci Lett 20:873–876

    Article  CAS  Google Scholar 

  25. Caruso F, Caruso RA, Mohwald H (1998) Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282:1111–1114

    Article  CAS  Google Scholar 

  26. Donath E, Sukhorukov GB, Caruso F, Davis S (1998) Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angew Chem Int Ed 37:2202–2205

    Article  CAS  Google Scholar 

  27. Johnson SA, Ollivier PJ, Mallouk TE (1999) Ordered mesoporous polymers of tunable pore size from colloidal silica templates. Science 283:963–965

    Article  CAS  Google Scholar 

  28. Bronich TK, Ouyang M, Kabanov VA, Eisenberg A, Szoka FC, Kabanov AV (2002) Synthesis of vesicles on polymer template. J Am Chem Soc 124:11872–11873

    Article  CAS  Google Scholar 

  29. Holmesfarley SR, Reamey RH, Nuzzo R, McCarthy TJ, Whitesides GM (1987) Reconstruction of the interphase of oxidatively functionalized polyethylene and derivatives on heating. Langmuir 3:799–815

    Article  CAS  Google Scholar 

  30. Dowding PJ, Atkin R, Vincent B, Bouillot P (2004) Oil core-polymer shell microcapsules prepared by internal phase separation from emulsion droplets: I. Characterization and release rates for microcapsules with polystyrene shells. Langmuir 20:11374–11379

    Article  CAS  Google Scholar 

  31. Dinsmore AD, Hsu MG, Nikolaides MG, Marques M, Bausch AR, Weitz DA (2002) Colloidosomes: selectively permeable capsules composed of colloidal particles. Science 298:1006–1009

    Article  CAS  Google Scholar 

  32. Hotz J, Meier W (1998) Vesicle-templated polymer hollow spheres. Langmuir 14:1031–1036

    Article  CAS  Google Scholar 

  33. Qian J, Wu FP (2007) Synthesis of thermosensitive hollow spheres via a one-pot process. Chem Mater 19:5839–5841

    Article  CAS  Google Scholar 

  34. Peyratout CS, Dahne L (2004) Tailor-made polyelectrolyte microcapsules: from multilayers to smart containers. Angew Chem Int Ed 43:3762–3783

    Article  CAS  Google Scholar 

  35. Velev OD, Furusawa K (1996) Assembly of latex particles by using emulsion droplets as templates: 1. Microstructured hollow spheres. Langmuir 12:2374–2384

    Article  CAS  Google Scholar 

  36. Zhao B, Brittain WJ (1999) Synthesis of tethered polystyrene-block-poly(methyl methacrylate) monolayer on a silicate substrate by sequential carbocationic polymerization and atom transfer radical polymerization. J Am Chem Soc 121:3557–3558

    Article  CAS  Google Scholar 

  37. Sidorenko A, Minko S, Schenk-Meuser K, Duschner H, Stamm M (1999) Switching of polymer brushes. Langmuir 15:8349–8355

    Article  CAS  Google Scholar 

  38. Tiarks F, Landfester K, Antonietti M (2001) Preparation of polymeric nanocapsules by miniemulsion polymerization. Langmuir 17:908–918

    Article  CAS  Google Scholar 

  39. Makal U, Wynne KJ (2005) Water induced hydrophobic surface. Langmuir 21:3742–3745

    Article  CAS  Google Scholar 

  40. Makal U, Uslu N, Wynne KJ (2007) Water makes it hydrophobic: contraphilic wetting for polyurethanes with soft blocks having semifluorinated and 5, 5-dimethylhydantoin side chains. Langmuir 23:209–216

    Article  CAS  Google Scholar 

  41. Cassie ABD (1948) Contact angles. Discuss Faraday Soc 3:11–16

    Article  Google Scholar 

  42. Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28:988–994

    Article  CAS  Google Scholar 

  43. Lamb DJ, Anstey JF, Fellows CM, Monteiro MJ, Gilbert RJ (2001) Modification of natural and artificial polymer colloids by “topology-controlled” emulsion polymerization. Biomacromolecules 2:518–525

    Article  CAS  Google Scholar 

  44. Horcas I, Fernandez R, Gomez-Rodriguez JM, Colchero J, Gomez-Herrero J, Baro AM (2007) WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum 78:013705

    Article  CAS  Google Scholar 

  45. Hutter JL, Bechhoefer J (1993) Calibration of atomic-force microscope tips. Rev Sci Instrum 64:1868–1873

    Article  CAS  Google Scholar 

  46. Ionov L, Houbenov N, Sidorenko A, Stamm M (2004) Inverse and reversible switching gradient surfaces from mixed polyelectrolyte brushes. Langmuir 20:9916–9919

    Article  CAS  Google Scholar 

  47. Xu FJ, Neoh KG, Kang ET (2009) Bioactive surfaces and biomaterials via atom transfer radical polymerization. Prog Polym Sci 34:719–761

    Article  CAS  Google Scholar 

  48. Pelton RH, Chibante P (1986) Preparation of aqueous lattices with N-isopropylacrylamide. Colloids Surf 20:247–256

    Article  CAS  Google Scholar 

  49. Tanaka H (1979) Hofmann reaction of polyacrylamide—relationship between reaction condition and degree of polymerization of polyvinylamine. J Polym Sci A Polym Chem 17:1239–1245

    CAS  Google Scholar 

  50. Yamamoto Y, Sefton MV (1996) Hofmann degradation of acrylamide copolymer: synthesis of amine functionalized thermoplastic hydrogel. J Appl Polym Sci 61:351–358

    Article  CAS  Google Scholar 

  51. Zhang LH, Kauffman GS, Pesti JA, Yin JG (1997) Rearrangement of N-alpha-protected l-asparagines with iodosobenzene diacetate. A practical route to beta-amino-l-alanine derivatives. J Org Chem 62:6918–6920

    Article  CAS  Google Scholar 

  52. Brazel CS, Peppas NA (1995) Synthesis and characterization of thermomechanically and chemomechanically responsive poly(N-isopropylacrylamide-co-methacrylic acid) hydrogels. Macromolecules 28:8016–8020

    Article  CAS  Google Scholar 

  53. Zhou S, Chu B (1998) Synthesis and volume phase transition of poly(methacrylic acid-co-N-isopropylacrylamide) microgel particles in water. J Phys Chem B 102:1364–1371

    Article  CAS  Google Scholar 

  54. Nerapusri V, Keddie JL, Vincent B, Bushnak IA (2006) Swelling and deswelling of adsorbed microgel monolayers triggered by changes in temperature, pH, and electrolyte concentration. Langmuir 22:5036–5041

    Article  CAS  Google Scholar 

  55. Lopez-Leon T, Ortega-Vinuesa JL, Bastos-Gonzalez B, Elaissari A (2006) Cationic and anionic poly(N-isopropylacrylamide) based submicron gel particles: electrokinetic properties and colloidal stability. J Phys Chem B 110:4629–4636

    Article  CAS  Google Scholar 

  56. Tsuji S, Kawaguchi H (2005) Self-assembly of poly(N-isopropylacrylamide)-carrying microspheres into two-dimensional colloidal arrays. Langmuir 21:2434–2437

    Article  CAS  Google Scholar 

  57. Serpe MJ, Jones CD, Lyon LA (2003) Layer-by-layer deposition of thermoresponsive microgel thin films. Langmuir 19:8759–8764

    Article  CAS  Google Scholar 

  58. Khanduyeva N, Senkovskyy V, Beryozkina T, Horecha M, Stamm M, Uhrich C, Riede M, Leo K, Kiriy A (2009) Surface engineering using kumada catalyst-transfer polycondensation (KCTP): preparation and structuring of poly(3-hexylthiophene)-based graft copolymer brushes. J Am Chem Soc 331:153–161

    Article  Google Scholar 

  59. Beryozkina T, Boyko K, Khanduyeva N, Senkovskyy V, Horecha M, Oertel U, Simon F, Komber H, Stamm M, Kiriy A (2009) Grafting of polyfluorene by surface-initiated suzuki polycondensation. Angew Chem 48:2695–2698

    Article  CAS  Google Scholar 

  60. Flory PJ, Rabjohn N, Shaffer MC (1949) Dependence of elastic properties of vulcanized rubber on the degree of cross linking. J Polym Sci 4:225–245

    Article  CAS  Google Scholar 

  61. Moulton A, Grosjean J, Owen G (2005) In: The Moulton formulae and methods—directly usable for calculations in mechanical engineering. Professional Engineering Publishing, London, UK

  62. Nash WA (1992) In: Schaum’s outline series theory and problems of statics and mechanics of materials, chap 10. McGraw Hill, New York

  63. Hicks TG (2003) In: Pocket guide mechanical engineering formulas, sect 3. McGraw Hill, New York

  64. Meunier F, Elaissari A, Pichot C (1995) Preparation and characterization of cationic poly(N-Isopropylacrylamide) copolymer latex. Polym Adv Technol 6:489–496

    Article  CAS  Google Scholar 

  65. Pelton RH, Pelton HM, Morphesis A, Rowell RL (1989) Particle sizes and electrophoretic mobilities of poly(N-isopropylacrylamide) latex. Langmuir 5:816–818

    Article  CAS  Google Scholar 

  66. Wu X, Pelton RH, Hamielec AE, Woods DR, McPhee W (1994) The kinetics of poly(N-isopropylacrylamide) microgel latex formation. Colloid Polym Sci 272:467–477

    Article  CAS  Google Scholar 

  67. Saunders BR (2004) On the structure of poly(N-isopropylacrylamide) microgel particles. Langmuir 2:3925–3932

    Article  Google Scholar 

  68. Mason TG, Lin MY (2005) Density profiles of temperature-sensitive microgel particles. Phys Rev E 71:040801

    Article  CAS  Google Scholar 

  69. Stieger M, Pedersen JS, Lindner P, Richtering W (2004) Are thermoresponsive microgels model systems for concentrated colloidal suspensions? A rheology and small-angle neutron scattering study. Langmuir 20:7283–7292

    Article  CAS  Google Scholar 

  70. Fernandez-Barbero A, Fernandez-Nieves I, Grillo E, Lopez-Cabarco (2002) Structural modifications in the swelling of inhomogeneous microgels by light and neutron scattering. Phys Rev E 66:051803

    Article  CAS  Google Scholar 

  71. Saunders BR, Laajam N, Daly E, Teow S, Hu X, Stepto R (2009) Microgels: from responsive polymer colloids to biomaterials. Adv Colloid Interface Sci 147–148:251–262

    Article  Google Scholar 

  72. Christensen ML, Keiding K (2005) Study of the compositional heterogeneity in poly (N-isopropylacrylamide-acrylic acid) microgels by potentiometric titration experiments. Colloids Surf A Physicochem Eng Asp 252:61–69, It is believed that during the formation of PNIPAM microgels, MBA cross-linker was consumed faster and therefore preferentially incorporated into the microgels. As a result of the progressive depletion of the polymerization mixture by the cross-linker, cross-linking density for the PNIPAM microgels will decrease from the centre to the periphery. It can be assumed that at certain conditions “hairy” microgels will be formed, where the highly cross-linked core is decorated by branched or even linear dangling polymer chains

    Article  CAS  Google Scholar 

  73. Horecha M, Senkovskyy V, Synytska A, Stamm M, Chervanyov A, Kiriy A (2010) Ordered surface structures from PNIPAM-based loosely packed microgel particles. Soft Matter published in web 21.09.2010. doi:10.1039/C0SM00634C

  74. Hofl S, Zitzler L, Hellweg T, Herminghaus S, Mugele F (2007) Volume phase transition of “smart” microgels in bulk solution and adsorbed at an interface: a combined AFM, dynamic light, and small angle neutron scattering study. Polymer 48:245–254

    Article  Google Scholar 

Download references

Acknowledgment

Financial support was provided by the Deutsche Forschungsgemeinschaft (STA 324/32-1 and SPP STA 324/32-2, 1259/1 “Intellegente Hydrogele”).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Volodymyr Senkovskyy or Anton Kiriy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supporting Information (PDF 308 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horecha, M., Senkovskyy, V., Schneider, K. et al. Swelling behaviour of PNIPAM-polyisoprene core-shell microgels at surface. Colloid Polym Sci 289, 603–612 (2011). https://doi.org/10.1007/s00396-010-2312-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-010-2312-9

Keywords

Navigation