Skip to main content
Log in

Controlling biotinylation of microgels and modeling streptavidin uptake

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Compared are two approaches for the biotinylation of poly(N-isopropylacrylamide-co-vinylacetic acid) microgels, 300-nm diameter, water swollen particles with a corona of carboxyl groups. The biotinylated microgels are a platform for bioactive water-based ink. Streptavidin binding was measured as a function of biotin density, and the results were interpreted with a new model that predicts the minimum local density of biotins required to capture a streptavidin. An amino-polyethylene glycol derivative of biotin gave higher biotin contents than a biotin hydrazide. However, the streptavidin content versus biotin content results for both biotin derivatives fell on the same master curve with maximum biotin coverage of 0.11 mg of bound streptavidin per milligram of biotinylated microgel. Exclusion experiments showed that streptavidin was too big to penetrate the cross-linked microgel structure; thus, the conjugated streptavidin was restricted to the microgel surface. The colloidal stability of the microgels was preserved, and the biotinylated products showed good hydrolytic stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kawaguchi H, Fujimoto K, Mizuhara Y (1992) Hydrogel microspheres.3. Temperature-dependent adsorption of proteins on poly-N-isopropylacrylamide hydrogel microspheres. Colloid Polym Sci 270(1):53–57

    Article  CAS  Google Scholar 

  2. Pichot C (2004) Surface-functionalized latexes for biotechnological applications. Curr Opin Colloid Interface Sci 9(3–4):213–221

    Article  CAS  Google Scholar 

  3. Pelton RH, Chibante P (1986) Preparation of aqueous latices with N-isopropylacrylamide. Colloids Surf 20(3):247–256

    Article  CAS  Google Scholar 

  4. Pelton R (2000) Temperature-sensitive aqueous microgels. Adv Colloid Interface Sci 85(1):1–33

    Article  CAS  Google Scholar 

  5. Nayak S, Lyon LA (2005) Soft nanotechnology with soft nanoparticles. Angew Chem Int Ed 44(47):7686–7708

    Article  CAS  Google Scholar 

  6. Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K (2008) The development of microgels/nanogels for drug delivery applications. Prog Polym Sci 33(4):448–477. doi:10.1016/j.progpolymsci.2008.01.002

    Article  CAS  Google Scholar 

  7. Hoare T, Pelton R (2008) Impact of microgel morphology on functionalized microgel–drug interactions. Langmuir 24(24):1005–1012

    Article  CAS  Google Scholar 

  8. Das M, Zhang H, Kumacheva E (2006) Microgels: old materials with new applications. Annu Rev Mater Res 36:117–142

    Article  CAS  Google Scholar 

  9. Kawaguchi H, Kisara K, Takahashi T, Achiha K, Yasui M, Fujimoto K (2000) Versatility of thermosensitive particles. Macromol Symp 151:591–598

    Article  CAS  Google Scholar 

  10. Taniguchi T, Duracher D, Delair T, Elaissari A, Pichot C (2003) Adsorption/desorption behavior and covalent grafting of an antibody onto cationic amino-functionalized poly(styrene-N-isopropylacrylamide) core–shell latex particles. Colloids Surf B Biointerfaces 29(1):53–65

    Article  CAS  Google Scholar 

  11. Colonne M, Chen Y, Wu K, Freiberg S, Giasson S, Zhu XX (2007) Binding of streptavidin with biotinylated thermosensitive nanospheres based on poly(N,N-diethylacrylamide-co-2-hydroxyethyl methacrylate). Bioconjug Chem 18(3):999–1003

    Article  CAS  Google Scholar 

  12. Hong C-Y, Pan C-Y (2006) Direct synthesis of biotinylated stimuli-responsive polymer and diblock copolymer by raft polymerization using biotinylated trithiocarbonate as raft agent. Macromolecules 39(10):3517–3524. doi:10.1021/ma052593+

    Article  CAS  Google Scholar 

  13. Sirpal S, Gattas-Asfura KM, Leblanc RM (2007) A photodimerization approach to crosslink and functionalize microgels. Colloids Surf B Biointerfaces 58(2):116–120

    Article  CAS  Google Scholar 

  14. Su S, Ali MM, Filipe CDM, Li Y, Pelton R (2008) Microgel-based inks for paper-supported biosensing applications. Biomacromolecules 9(3):935–941

    Article  CAS  Google Scholar 

  15. Pelton R (2009) Bioactive paper—a low cost platform for diagnostics. Trends Anal Chem 28(8):925–942

    Article  CAS  Google Scholar 

  16. Hoare T, McLean D (2006) Kinetic prediction of functional group distributions in thermosensitive microgels. J Phys Chem B 110(41):20327–20336

    Article  CAS  Google Scholar 

  17. Hoare T, Pelton R (2004) Functional group distributions in carboxylic acid containing poly(N-isopropylacrylamide) microgels. Langmuir 20(6):2123–2133

    Article  CAS  Google Scholar 

  18. Debord JD, Lyon LA (2007) On the unusual stability of succinimidyl esters in pNIPAm-AAc microgels. Bioconjug Chem 18(2):601–604

    Article  CAS  Google Scholar 

  19. Hermanson GT (1996) Bioconjugate techniques. Academic, San Diego

    Google Scholar 

  20. Prestwich G, Marecak D, Marecek J, Vercruysse K, Ziebell M (1998) Controlled chemical modification of hyaluronic acid: synthesis, applications, and biodegradation of hydrazide derivatives. J Control Release 53(1–3):93–103

    Article  CAS  Google Scholar 

  21. Kremsky J, Wooters J, Dougherty J, Meyers R, Collins M, Brown E (1987) Immobilization of DNA via oligonucleotides containing an aldehyde or carboxylic acid group at the 5′ terminus. Nucleic Acids Res 15(7):2891

    Article  CAS  Google Scholar 

  22. Yang M, Teeuwen RLM, Giesbers M, Baggerman J, Arafat A, de Wolf FA, van Hest JCM, Zuilhof H (2008) One-step photochemical attachment of NHS-terminated monolayers onto silicon surfaces and subsequent functionalization. Langmuir 24(15):7931–7938. doi:10.1021/la800462u

    Article  CAS  Google Scholar 

  23. Nayak S, Lyon LA (2004) Ligand-functionalized core/shell microgels with permselective shells. Angew Chem Int Ed 43(48):6706–6709

    Article  CAS  Google Scholar 

  24. Hoare T, Pelton R (2004) Highly pH and temperature responsive microgels functionalized with vinylacetic acid. Macromolecules 37(7):2544–2550

    Article  CAS  Google Scholar 

  25. McCormick D, Roth J (1970) Specificity, stereochemistry, and mechanism of the color reaction between p-dimethylaminocinnamaldehyde and biotin analogs. Anal Biochem 34(1):226–236

    Article  CAS  Google Scholar 

  26. Ahmed J, Verma K (1979) Determination of d-biotin at the microgram level. Talanta 26(11):1025

    Article  CAS  Google Scholar 

  27. Hoare T, Pelton R (2006) Dimensionless plot analysis: a new way to analyze functionalized microgels. J Colloid Interface Sci 303(1):109–116

    Article  CAS  Google Scholar 

  28. Nakajima N, Ikada Y (1995) Mechanism of amide formation by carbodiimide for bioconjugation in aqueous-media. Bioconjug Chem 6(1):123–130

    Article  CAS  Google Scholar 

  29. Kurzban GP, Bayer EA, Wilchek M, Horowitz PM (1991) The quaternary structure of streptavidin in urea. J Biol Chem 266(22):14470–14477

    CAS  Google Scholar 

  30. Ren CL, Carvajal D, Shull KR, Szleifer I (2009) Streptavidin–biotin binding in the presence of a polymer spacer. A theoretical description. Langmuir 25(20):12283–12292. doi:10.1021/la901735d

    Article  CAS  Google Scholar 

  31. Bogusiewicz A, Mock NI, Mock DM (2004) Instability of the biotin–protein bond in human plasma. Anal Biochem 327(2):156–161. doi:10.1016/j.ab.2004.01.011

    Article  CAS  Google Scholar 

  32. Bogusiewcz A, Mock NI, Mock DM (2004) Release of biotin from biotinylated proteins occurs enzymatically and nonenzymatically in human plasma. Anal Biochem 331(2):260–266. doi:10.1016/j.ab.2004.05.020

    Article  Google Scholar 

Download references

Acknowledgments

Prof. Todd Hoare is thanked for useful discussions. The authors acknowledge the SENTINEL Bioactive Paper NSERC Network for financial support. RP and YL hold Canada Research Chairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Pelton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Pharand, L., Wen, Q. et al. Controlling biotinylation of microgels and modeling streptavidin uptake. Colloid Polym Sci 289, 659–666 (2011). https://doi.org/10.1007/s00396-010-2305-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-010-2305-8

Keywords

Navigation