Colloid and Polymer Science

, Volume 288, Issue 9, pp 969–980 | Cite as

Probing the internal environment of PVP networks generated by irradiation with different sources

  • Mariaelena Ricca
  • Vito Foderà
  • Daniela Giacomazza
  • Maurizio Leone
  • Giuseppe Spadaro
  • Clelia DispenzaEmail author
Original Contribution


Poly(N-vinyl-2-pyrrolidone) (PVP) hydrogels have been synthesised from the aqueous solutions of the same linear polymer by two different radiation sources: electron beams and UV rays. The present investigation couples conventional hydrogel characterisation techniques with the study of the partition equilibria, fluorescence behaviour and release of two different molecular probes, 1-anilino-8-naphthalene sulphonate (ANS) and Thioflavin T (ThT). The two probes have comparable molecular weight and different structural and optical properties. The ‘chemical’ networks produced upon irradiation in different experimental conditions presented quite distinctive mechanical spectra, yielded to different porous solids upon freeze-drying and showed specific rehydration ratios when ‘equilibrated’ in water. More interestingly, they offered ‘hydrophobic pockets’ to host the ANS molecules in a way that the probe is completely occluded from water, making it fluoresce. Conversely, the generated PVP networks did not show any specific affinity towards the hydrophilic ThT that was only barely untaken.


Hydrogels Poly(N-vinyl-2-pyrrolidone) Electron beam irradiation UV irradiation Rheology Fluorescent probes 


  1. 1.
    Peppas NA, Nikos AG (1986) In: Peppas NA (ed) Hydrogels in medicine and pharmacy. CRC, Boca RatonGoogle Scholar
  2. 2.
    Hennink WE, van Nostrum CF (2002) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 54:13–36CrossRefGoogle Scholar
  3. 3.
    Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18:1345–1360CrossRefGoogle Scholar
  4. 4.
    Rosiak JM, Yoshii F (1999) Hydrogels and their medical applications. Nucl Instrum Meth Phys Res B 151:56–65CrossRefGoogle Scholar
  5. 5.
    Xu B (2009) Gels as functional nanomaterials for biology and medicine. Langmuir 25(15):8375–8377CrossRefGoogle Scholar
  6. 6.
    Lin C-C, Metters AT (2006) Hydrogels in controlled release formulations. Network design and mathematical modeling. Adv Drug Deliv Rev 58:1379–1408CrossRefGoogle Scholar
  7. 7.
    Rosiak JM, Ulanski P (1999) Synthesis of hydrogels by irradiation of polymers in aqueous solution. Radiat Phys Chem 55:139–151CrossRefGoogle Scholar
  8. 8.
    Rathbone MJ, Hadgraft J, Roberts MS (eds) (2003) Modified-release drug delivery technology. Dekker, New YorkGoogle Scholar
  9. 9.
    Kim B, Peppas NA (2003) Poly(ethylene)-glycol containing hydrogels for oral protein delivery applications. Biomed Microdevices 5(4):333–341CrossRefGoogle Scholar
  10. 10.
    Gulsen D, Chauhan A (2005) Dispersion microemulsion drops in HEMA hydrogel: a potential ophthalmic drug delivery vehicle. Int J Pharm 292:95–117CrossRefGoogle Scholar
  11. 11.
    Chung HJ, Park TG (2009) Self-assembled and nanostructured hydrogels for drug delivery and tissue engineering. Nano Today 4:429–437CrossRefGoogle Scholar
  12. 12.
    Nakaji-Hirabayashi T, Kato K, Iwata H (2009) Hyaluronic acid hydrogel loaded with genetically-engineered brain-derived neurotrophic factor as a neural cell carrier. Biomaterials 30:4581–4589CrossRefGoogle Scholar
  13. 13.
    Kato N, Sakai Y, Shibata S (2003) Wide-range control of deswelling time for thermosensitive poly(n-isopropylacrylamide) gel treated by freeze-drying. Macromolecules 36:961–963CrossRefGoogle Scholar
  14. 14.
    Zhang J-T, Bhat R, Jandt KD (2009) Temperature-sensitive PVA/PNIPAAm semi-IPN hydrogels with enhanced responsive properties. Acta Biomateralia 5(1):488–497CrossRefGoogle Scholar
  15. 15.
    Zhao Q, Sun J, Ling Q, Zhou Q (2009) Synthesis of macroporous thermosensitive hydrogels: a novel method of controlling pore size. Langmuir 25:3249–3254CrossRefGoogle Scholar
  16. 16.
    Kuru EA, Orakdogen N, Okay O (2007) Preparation of homogeneous polyacrylamide hydrogels by free-radical crosslinking copolymerization. Eur Polym J 43:2913–2921CrossRefGoogle Scholar
  17. 17.
    Maeda H, Rambone G, Coviello T, Yuguchi Y, Urakawa H, Alhaique F, Kajiwara K (2001) Low-degree oxidized scleroglucan and its hydrogel. Int J Biol Macromol 28:351–358CrossRefGoogle Scholar
  18. 18.
    Yuguchi Y, Kumagai T, Wu M, Hirotsu T, Hosokawa J (2004) Gelation of xyloglucan in water/alcohol systems. Cellulose 11:203–208CrossRefGoogle Scholar
  19. 19.
    Evmenenko GA, Budtova T, Buyanov A, Frenkel S (1996) Structure of polyelectrolyte hydrogels studied by SANS. Polymer 37:5499–5502CrossRefGoogle Scholar
  20. 20.
    Croney JC, Jamenson DM, Learmonth RP (2001) Fluorescence spectroscopy in biochemistry: teaching basic principles with visual demonstrations. Biochem Mol Biol Educ 29:60–65Google Scholar
  21. 21.
    Groenning MJ (2010) Binding mode of Thioflavin T and other molecular probes in the context of amyloid fibrils—current status. J Chem Biol 3(1):1–18Google Scholar
  22. 22.
    White NS, Errington RJ (2005) Fluorescence techniques for drug delivery research: theory and practice. Adv Drug Deliv Rev 57:17–42CrossRefGoogle Scholar
  23. 23.
    Rangarajan B, Coons LS, Scranton AB (1996) Characterization of hydrogels using luminescence spectroscopy. Biomaterials 17:649–661CrossRefGoogle Scholar
  24. 24.
    Huang HW, Horie K (1997) Fluorescence spectroscopy of polymer gels and solids. Trends Polym Sci 5:407–414Google Scholar
  25. 25.
    Geuskens G, Soukrati A (2000) Investigation of polyacrylamide hydrogels using 1-anilinonaphtalene-8-sulfonate as fluorescent probe. Eur Polym J 36:1537–1546CrossRefGoogle Scholar
  26. 26.
    Itagaki H, Fukiishi H, Imai T, Watase M (2005) Molecular structure of agarose chains in thermoreversible hydrogels revealed by means of fluorescent probe technique. J Polym Sci B Polym Phys 23:680–688CrossRefGoogle Scholar
  27. 27.
    Aburto J, Le Borgne S (2004) Selective adsorption of dibenzothiophene by an imprinted and stimuli-responsive chitosan hydrogel. Macromolecules 37:2938–2943CrossRefGoogle Scholar
  28. 28.
    Radu-Wu LC, Yang J, Wu K, Kopecek J (2009) Self-assembled hydrogels from poly[N-2-hydroxypropyl)methacrylamide] grafted with b-sheet peptides. Biomacromolecules 10(8):2319–2327CrossRefGoogle Scholar
  29. 29.
    Stroble G (1987) The physics of polymers. Springer-Verlag, Berlin, Chp 3Google Scholar
  30. 30.
    Elias HG (2008) Macromolecules: vol 3: Physical structures and properties in Macromolecules series. Wiley-VCH, New York, Chp 3Google Scholar
  31. 31.
    Truong Nguyen K, West JL (2002) Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23:4307–4314CrossRefGoogle Scholar
  32. 32.
    Lopergolo L, Lugao AB, Catalani LH (2003) Direct UV photocrosslinking of poly(N-vinyl-2-pyrrolidone) (PVP) to produce hydrogels. Polymer 44:6217–6222CrossRefGoogle Scholar
  33. 33.
    Fechine GJM, Barros JAG, Catalani LH (2004) Poly(N-vinyl-2-pyrrolidone) hydrogel production by ultraviolet radiation: new methodologies to accelerate crosslinking. Polymer 45:4705–4709CrossRefGoogle Scholar
  34. 34.
    Rosiak JM, Olejniczak J (1993) Medical applications of radiation formed hydrogels. Radiat Phys Chem 42:903–906CrossRefGoogle Scholar
  35. 35.
    D’Errico, De Lellis M, Mangiapia G, Tedeschi A, Ortona O, Fusco S, Borzacchiello A, Ambrosio L (2008) Structural and mechanical properties of UV-photo-cross-linked poly(N-vinyl-2-pyrrolidone) hydrogels. Biomacromolecules 9:231–240CrossRefGoogle Scholar
  36. 36.
    Fuochi PG (1994) Irradiation of power semiconductor devices by high energy electrons: the Italian experience. Radiat Phys Chem 44:431CrossRefGoogle Scholar
  37. 37.
    Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, New YorkGoogle Scholar
  38. 38.
    Schurz J (1991) Rheology of polymer solutions of the network type. Prog Polym Sci 16(1):1–53CrossRefGoogle Scholar
  39. 39.
    Matulis D, Lovrien RE (1998) 1-Anilino-8-naphthalene sulfonate anion-protein binding depends primarily on ion pair formation. Biophys J 74:422–429CrossRefGoogle Scholar
  40. 40.
    Matulis D, Baumann CG, Bloomfield VA, Lovrien RE (1999) 1-Anilino-8-naphthalene sulfonate as a protein conformational tightening agent. Biopolymers 49:451–458CrossRefGoogle Scholar
  41. 41.
    Voropai ES, Samtsov MP, Kaplevskii KN, Maskevich AA, Stepuro VI, Povarova OI, Kuznetsova M, Turoverov KK, Fink AL, Uversky VN (2003) Spectral properties of thioflavin T and its complexes with amyloid fibrils. J Appl Phys 70:868–874Google Scholar
  42. 42.
    Maskevich AA, Stsiapura VI, Kuzmitsky VA, Kuznetsova IM, Povarova OI, Uversky VN, Turoverov KK (2007) Spectral properties of thioflavin T in solvents with different dielectric properties and in a fibril-incorporated form. J Proteome Res 6:1392–1401CrossRefGoogle Scholar
  43. 43.
    Stsiapura VI, Maskevich AA, Kuzmitsky VA, Turoverov KK, Kuznetsova IM (2007) Computational study of thioflavin T torsional relaxation in the excited state. J Phys Chem A 111:4829–4835CrossRefGoogle Scholar
  44. 44.
    Groenning M, Olsen L, van de Weert M, Flink JM, Frokjaer S, Jorgensen FS (2007) Study on the binding of Thioflavin T to β-sheet-rich and non-β-sheet cavities. J Struct Biol 158:358–369CrossRefGoogle Scholar
  45. 45.
    Foderà V, Librizzi F, Groenning M, van de Weert M, Leone M (2008) Secondary nucleation and accessible surface in insulin amyloid fibril formation. J Phys Chem B 112:3853–3858CrossRefGoogle Scholar
  46. 46.
    Foderà V, Cataldo S, Librizzi F, Pignataro B, Spiccia P, Leone M (2009) Self-organization pathways and spatial heterogeneity in insulin amyloid fibril formation. J Phys Chem B 113:10830–10837CrossRefGoogle Scholar
  47. 47.
    Foderà V, Groenning M, Vetri V, Librizzi F, Spagnolo S, Cornett C, Olsen L, van de Weert M, Leone M (2008) Thioflavin T hydroxylation at basic pH and its effect on amyloid fibril detection. J Phys Chem B 112:15174–15181CrossRefGoogle Scholar
  48. 48.
    Anseth KS, Bowman CN, Brannon-Peppas L (1996) Mechanical properties of hydrogels and their experimental determination. Biomaterials 17:1647–1657CrossRefGoogle Scholar
  49. 49.
    Rička J, Tanaka T (1984) Swelling of ionic gels: quantitative performance of the Donnan theory. Macromolecules 17(12):2916–2921CrossRefGoogle Scholar
  50. 50.
    Dispenza C, Tripodo G, LoPresti C, Spadaro G, Giammona G (2009) Synthesis, characterization and properties of α,β-poly(N-2-hydroxyethyl)-dl-aspartamide-graft-maleic anhydride precursors and their stimuli-responsive hydrogels. React Funct Polym 69(8):565–575CrossRefGoogle Scholar
  51. 51.
    Macgregor RB, Weber G (1986) Estimation of the polarity of protein interior by optical spectroscopy. Nature 319(6048):70–73CrossRefGoogle Scholar
  52. 52.
    Cattoni DI, Kaufman SB, Flecha FLG (2009) Kinetics and thermodynamics of the interaction of 1-anilino-naphthalene-8-sulfonate with proteins. Biochim Biophys Acta—Proteins and Proteomics 1794(11):1700–1708, and references hereinCrossRefGoogle Scholar
  53. 53.
    Bismuto E, Irace G, Sirangelo I, Gratton E (1996) Pressure–induced perturbation of ANS–apomyoglobin complex: frequency domain fluorescence studies on native and acidic compact states. Protein Sci 5:121–126CrossRefGoogle Scholar
  54. 54.
    Krebs MHR, Bromley EHC, Donald AM (2005) The binding of thioflavin-T to amyloid fibrils: localisation and implications. J Struct Biol 149:30–37CrossRefGoogle Scholar
  55. 55.
    Nielsen Garriques L, Khurana R, Coats A, Frokjaer S, Brange J, Vyas S, Uversky VN, Fink AL (2001) Effect of environmental factors on the kinetics of insulin fibril formation: elucidation of the molecular mechanism. Biochemistry 40:6036–6046CrossRefGoogle Scholar
  56. 56.
    Styrer L (1965) The interaction of a naphthalene dye with apomyoglobin and apohemoglobin. A fluorescent probe of a non-polar binding sites. J Mol Biol 13:482CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Mariaelena Ricca
    • 1
  • Vito Foderà
    • 2
    • 3
    • 4
  • Daniela Giacomazza
    • 3
  • Maurizio Leone
    • 2
    • 3
  • Giuseppe Spadaro
    • 1
  • Clelia Dispenza
    • 1
    Email author
  1. 1.Dipartimento di Ingegneria Chimica dei Processi e dei MaterialiUniversità di PalermoPalermoItaly
  2. 2.Dipartimento di Scienze Fisiche ed AstronomicheUniversità di PalermoPalermoItaly
  3. 3.CNR—Istituto di BiofisicaPalermoItaly
  4. 4.Sector of Biological and Soft Systems, Department of Physics, Cavendish LaboratoryUniversity of CambridgeCambridgeUK

Personalised recommendations