Skip to main content
Log in

Thermodynamic and kinetic considerations on the morphological stability of “hamburger-like” composite polymer particles prepared by seeded dispersion polymerization

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Micrometer-sized, monodisperse, “hamburger-like” polystyrene (PS)/poly(2-ethylhexyl methacrylate)/decane composite particles were obtained by seeded dispersion polymerization of 2-ethylhexyl methacrylate with PS seed particles in the presence of decane. The morphological stability of the hamburger-like particles was investigated based on thermodynamic and kinetic aspects. The hamburger-like morphology was maintained at 60 °C (above glass transition temperature (T g)) for at least 1 week in spite of less thermodynamic stability than hemispherical morphology. T g of the particles gradually increased throughout the polymerization due to monomer consumption. Geometric calculation result indicates that the degree of reduction of the interfacial free energy at the early stage of the morphological development is significantly low. From these results, it is concluded the morphological stability of the hamburger-like particles is considerably high because the development from hamburger-like to hemispherical morphologies is retarded by the gradual increase in viscosity inside the particles and the significantly lower interfacial free energy reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lu Y, Yin Y, Xia Y (2001) Adv Mater 13:415–420

    Article  CAS  Google Scholar 

  2. Mock EB, Zukoski CF (2007) Langmuir 23:8760–8771

    Article  CAS  Google Scholar 

  3. Hosein ID, Liddell CM (2007) Langmuir 23:10479–10485

    Article  CAS  Google Scholar 

  4. Mishchenko MI, Hovenier JW, Travis LD (2000) Light scattering by nonspherical particles: theory, measurements, and applications. Academic, San Diego, CA

    Google Scholar 

  5. Jogun SM, Zukoski CF (1999) J Rheol 43:847–871

    Article  CAS  Google Scholar 

  6. Ho CC, Ottewill RH, Yu L (1997) Langmuir 13:1925–1930

    Article  CAS  Google Scholar 

  7. Matsumoto T, Okubo M, Shibao S (1976) Kobunshi Ronbunshu 33:575–583

    CAS  Google Scholar 

  8. Okubo M, Ando M, Yamada A, Katsuta Y, Matsumoto T (1981) J Polym Sci: Polym Lett Ed 19:143–147

    Article  CAS  Google Scholar 

  9. Okubo M, Katsuta Y, Matsumoto T (1982) J Polym Sci: Polym Lett Ed 20:45–51

    Article  CAS  Google Scholar 

  10. Cho I, Lee K-W (1985) J Appl Polym Sci 30:1903–1926

    Article  CAS  Google Scholar 

  11. Skjeltorp AT, Ugelstad J, Ellingsen T (1986) J Colloid Interface Sci 113:577–582

    Article  CAS  Google Scholar 

  12. Okubo M, Kanaida K, Matsumoto T (1987) Colloid Polym Sci 265:876–881

    Article  CAS  Google Scholar 

  13. Sheu HR, El-Aasser MS, Vanderhoff JW (1990) J Polym Sci Part A: Polym Chem 28:629–651

    Article  CAS  Google Scholar 

  14. Sheu HR, El-Aasser MS, Vanderhoff JW (1990) J Polym Sci Part A: Polym Chem 28:653–667

    Article  CAS  Google Scholar 

  15. Okubo M (1990) Makromol Chem, Macromol Symp 35(36):307–325

    Google Scholar 

  16. Sundberg DC, Casassa AP, Pantazopoulos J, Muscato MR (1990) J Appl Polym Sci 41:1425–1442

    Article  CAS  Google Scholar 

  17. Ho CC, Keller A, Odell JA, Ottewill RH (1993) Colloid Polym Sci 271:469–479

    Article  CAS  Google Scholar 

  18. Okubo M, Fujiwara T, Yamaguchi A (1998) Colloid Polym Sci 276:186–189

    Article  CAS  Google Scholar 

  19. Ni H, Ma G, Nagai M, Omi S (2001) J Appl Polym Sci 80:2002–2017

    Article  CAS  Google Scholar 

  20. Okubo M, Wang Z, Yamashita T, Ise E, Minami H (2001) J Polym Sci Part A: Polym Chem 39:3106–3111

    Article  CAS  Google Scholar 

  21. Okubo M, Miya T, Minami H, Takekoh R (2002) J Appl Polym Sci 83:2013–2021

    Article  CAS  Google Scholar 

  22. Wang D, Dimonie VL, Sudol ED, El-Aasser MS (2002) J Appl Polym Sci 84:2710–2720

    Article  CAS  Google Scholar 

  23. Okubo M, Takekoh R, Suzuki A (2002) Colloid Polym Sci 280:1057–1061

    Article  CAS  Google Scholar 

  24. Kaneko T, Hamada K, Chen MQ, Akashi M (2004) Macromolecules 37:501–506

    Article  CAS  Google Scholar 

  25. Alargova RG, Bhatt KH, Paunov VN, Velev OD (2004) Adv Mater 16:1653–1657

    Article  CAS  Google Scholar 

  26. Okubo M, Fujibayashi T, Yamada M, Minami H (2005) Colloid Polym Sci 283:1041–1045

    Article  CAS  Google Scholar 

  27. Okubo M, Fujibayashi T, Terada A (2005) Colloid Polym Sci 283:793–798

    Article  CAS  Google Scholar 

  28. Stubbs JM, Sundberg DC (2005) Polymer 46:1125–1138

    Article  CAS  Google Scholar 

  29. Reculusa S, Poncet-Legrand C, Perro A, Duguet E, Bourgeat-Lami E, Mingotaud C, Ravaine S (2005) Chem Mater 17:3338–3344

    Article  CAS  Google Scholar 

  30. Sun ZQ, Chen X, Zhang JH, Chen ZM, Zhang K, Yan X, Wang YF, Yu WZ, Yang B (2005) Langmuir 21:8987–8991

    Article  CAS  Google Scholar 

  31. Dendukuri D, Tsoi K, Hatton TA, Doyle PS (2005) Langmuir 21:2113–2116

    Article  CAS  Google Scholar 

  32. Nie Z, Xu S, Seo M, Lewis PC, Kumacheva E (2005) J Am Chem Soc 127:8058–8063

    Article  CAS  Google Scholar 

  33. Xu S, Nie Z, Seo M, Lewis PC, Kumacheva E, Stone HA, Garstecki P, Weibel DB, Gitlin I, Whitesides GM (2005) Angew Chem, Int Ed 44:724–728

    Article  Google Scholar 

  34. Kegel WK, Breed D, Elsesser M, Pine DJ (2006) Langmuir 22:7135–7136

    Article  CAS  Google Scholar 

  35. Kim J-W, Larsen RJ, Weitz DA (2006) J Am Chem Soc 128:14374–14377

    Article  CAS  Google Scholar 

  36. Mock EB, De Bruyn H, Hawkett BS, Gilbert RG, Zukoski CF (2006) Langmuir 22:4037–4043

    Article  CAS  Google Scholar 

  37. Zhou L, Shi S, Kuroda S, Kubota H (2006) Chem Lett 35:248–249

    Article  CAS  Google Scholar 

  38. Fujibayashi T, Okubo M (2007) Langmuir 23:7958–7962

    Article  CAS  Google Scholar 

  39. Kim J-W, Larsen RJ, Weitz DA (2007) Adv Mater 19:2005–2009

    Article  CAS  Google Scholar 

  40. Nisisako T, Torii T (2007) Adv Mater 19:1489–1493

    Article  CAS  Google Scholar 

  41. Yang S-M, Kim S-H, Yi G-R (2008) J Mater Chem 18:2177–2190

    Article  CAS  Google Scholar 

  42. Tajima A, Higuchi T, Yabu H, Shimomura M (2008) Colloids Surf A 313–314:332–334

    Article  CAS  Google Scholar 

  43. Tanaka T, Nakatsuru R, Kagari Y, Saito N, Okubo M (2008) Langmuir 24:12267–12271

    Article  CAS  Google Scholar 

  44. Okubo M, Izumi J, Hosotani T, Yamashita T (1997) Colloid Polym Sci 275:797–801

    Article  CAS  Google Scholar 

  45. Okubo M, Izumi J, Takekoh R (1999) Colloid Polym Sci 277:875–880

    Article  CAS  Google Scholar 

  46. Okubo M, Takekoh R, Izumi J, Yamashita T (1999) Colloid Polym Sci 277:972–978

    Article  CAS  Google Scholar 

  47. Okubo M, Okada M, Miya T, Takekoh R (2001) Colloid Polym Sci 279:807–812

    Article  CAS  Google Scholar 

  48. Okubo M, Yonehara H, Kurino T (2003) Progr Colloid Polym Sci 124:22–26

    Google Scholar 

  49. Tanaka T, Komatsu Y, Fujibayashi T, Minami H, Okubo M (2010) Langmuir 26:3848–3853

    Article  CAS  Google Scholar 

  50. Muscato MR, Sundberg DC (1991) J Polym Sci Part B: Polym Phys 29:1021–1024

    Article  CAS  Google Scholar 

  51. Okubo M, Yonehara H, Kurino T (2003) Colloid Polym Sci 281:1002–1005

    Article  CAS  Google Scholar 

  52. Andrews RJ, Grulke EA (1999) Glass transition temperatures of polymers. In: Brandrup J, Immergut EH, Grulke EA (eds) Polymer handbook, 4th edn. Wiley, New York, pp VI/193–VI/277

    Google Scholar 

  53. Sundberg DC, Durant YG (2003) Polym React Eng 11:379–432

    Article  CAS  Google Scholar 

  54. de Gennes P-G (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca, NY

    Google Scholar 

Download references

Acknowledgement

This work was supported by Grant-in-Aid for Scientific Research (Grant 21245050) from the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayoshi Okubo.

Additional information

Part CCCXXXV of the series "Studies on Suspension and Emulsion"

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujibayashi, T., Tanaka, T., Minami, H. et al. Thermodynamic and kinetic considerations on the morphological stability of “hamburger-like” composite polymer particles prepared by seeded dispersion polymerization. Colloid Polym Sci 288, 879–886 (2010). https://doi.org/10.1007/s00396-010-2211-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-010-2211-0

Keywords

Navigation