Skip to main content
Log in

Influence of different nematic crosslinking unit on mesomorphism of side-chain cholesteric elastomers containing menthyl groups

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The synthesis of two cholesteric monomers (M1 and M2), nematic crosslinking agent (C1 and C2), and the corresponding side-chain elastomers containing menthyl groups (P1 and P2 series) is described. The mesomorphism was investigated by differential scanning calorimetry, polarizing optical microscopy, X-ray diffraction, and thermogravimetric analysis. The effect of the content of the different nematic crosslinking unit on the mesomorphism of the elastomers was discussed. M1 and M2 showed cholesteric and blue phases; C1 and C2 showed nematic phase. Because of the introduction of the nematic crosslinking unit, elastomers P1-1−P1-5 and P2-1−P2-5 exhibited cholesteric phase. With increasing the content of nematic crosslinking unit, T g of the obtained elastomers revealed an increased tendency, and T i of P1 series firstly increased then decreased, while T i of P2 series decreased the mesomorphism of the corresponding elastomers when the content of nematic crosslinking unit was 12 mol.%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Finkelmann H, Kock HJ, Rehage G (1981) Makromol Chem Rapid Commun 2:317

    Article  CAS  Google Scholar 

  2. Zentel R, Reckert G (1986) Macromol Chem 87:1915

    Article  Google Scholar 

  3. Vallerien SU, Kremer F (1990) Makromol Chem Rapid Commun 11:593

    Article  CAS  Google Scholar 

  4. Hikmet RAM, Lub J (1992) Macromolecules 25:4194

    Article  CAS  Google Scholar 

  5. Jahromi S, Lub J, Mol GN (1994) Polymer 35:622

    Article  CAS  Google Scholar 

  6. Zentel R, Brehmer M (1996) Adv Mater 6:598

    Article  Google Scholar 

  7. Ortiz C, Ober CK, Kramer EJ (1998) Polymer 39:3713

    Article  CAS  Google Scholar 

  8. Hsu CS, Chen HL (1999) J Polym Sci Part A: Polym Chem 37:3929

    Article  CAS  Google Scholar 

  9. Hirschmann H, Roberts PMS, Davis FJ, Guo W, Hasson CD, Mitchell GR (2001) Polymer 42:7063

    Article  CAS  Google Scholar 

  10. Hiraoka K, Uematsu Y, Stein P, Finkelmann H (2002) Macromol Chem Phys 203:2205

    Article  CAS  Google Scholar 

  11. Li M, Hu ZJ, Chen G, Chen XF (2003) J Appl Polym Sci 88:2275

    Article  CAS  Google Scholar 

  12. Arai YO, Urayama K, Kohjiya S (2004) Polymer 45:5127

    Article  CAS  Google Scholar 

  13. Wang TL, Tsai JS, Tseng CG (2005) J Appl Polym Sci 96:336

    Article  CAS  Google Scholar 

  14. Saikrasun S, Bualek-Limcharoen S, Kohjiya S, Urayama K (2005) J Polym Sci Part B Polym Phys 43:135

    Article  CAS  Google Scholar 

  15. Rogez D, Brandt H, Finkelmann H, Martinoty P (2006) Macromol Chem Phys 207:735

    Article  CAS  Google Scholar 

  16. Beyer P, Terentjev EM, Zentel R (2007) Macromol Rapid Commun 28:1485

    Article  CAS  Google Scholar 

  17. Stenull O, Lubensky TC, Adams JM, Warner W (2008) Phys Rev E 78:021705

    Article  Google Scholar 

  18. Ren W, Mcmullan PJ, Griffin AC (2008) Macromol Chem Phys 209:1896

    Article  CAS  Google Scholar 

  19. Terentjev EM (1993) Euro Phys Lett 23:27

    Article  Google Scholar 

  20. Yang DK, West JL, Chien LC, Doane JW (1994) J Appl Phys 76:1331

    Article  CAS  Google Scholar 

  21. Broer DJ, Lub J, Mol GN (1995) Nature 378:467

    Article  CAS  Google Scholar 

  22. Pelcovits RA, Meyer RB (1995) de Physique II 5:877

    Article  CAS  Google Scholar 

  23. Chang CC, Chien LC, Meyer RB (1997) Phys Rev E 55:534

    Article  CAS  Google Scholar 

  24. Sapich B, Stumpe J, Kricheldorf HR (1998) Macromolecules 31:1016

    Article  CAS  Google Scholar 

  25. Terentjev EM, Warner M (1999) Eur Phys J B 8:595

    Article  CAS  Google Scholar 

  26. Finkelmann H (2001) Adv Mater 13:1069

    Article  CAS  Google Scholar 

  27. Bermel PA, Warner M (2002) Phys Rev E 65:056614

    Article  CAS  Google Scholar 

  28. Schmidtke J, Stille W, Finkelmann H (2003) Phys Rev Lett 90:083902

    Article  Google Scholar 

  29. Menzel AM, Brand HR (2007) Phys Rev E 75:011707

    Article  Google Scholar 

  30. Xing XJ, Baskaran A (2008) Phys Rev E 78:021709

    Article  Google Scholar 

  31. Hu JS, Ren SC, Zhang BY, Feng ZL, Chao CY (2008) J Appl Polym Sci 109:2187

    Article  CAS  Google Scholar 

  32. Hu JS, Zhao ZX, Kong B, Li D (2009) Colloid Polym Sci 287:215

    Article  CAS  Google Scholar 

  33. Hu JS, Wei KQ, Zhang BY, Yang LQ (2008) Liq Cryst 35:925

    Article  CAS  Google Scholar 

  34. Lin HS, Deng YN (1998) Chin J Pharm 29:184

    CAS  Google Scholar 

  35. Zhang BY, Hu JS, Yang LQ, He XZ, Liu C (2007) Euro Polym J 43:2017

    Article  CAS  Google Scholar 

  36. Hu JS, Zhang BY, Zhou AJ, Yang LQ, Wang B (2006) Euro Polym J 42:2849

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are grateful to NSFC Grant Nos. 50503005 and 90105001 for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-She Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, JS., Song, ZW., Liu, C. et al. Influence of different nematic crosslinking unit on mesomorphism of side-chain cholesteric elastomers containing menthyl groups. Colloid Polym Sci 288, 851–858 (2010). https://doi.org/10.1007/s00396-010-2206-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-010-2206-x

Keywords

Navigation