Skip to main content
Log in

Design and synthesis of novel organosoluble chiral poly(amide-ether-imide-urea) containing l-leucine moieties in the main chain

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

N,N′-(pyromellitoyl)-bis{N-[4(4-aminophenoxy)phenyl]-2-(4-methyl)p-entanamide} (5), as a novel chiral diamine, is synthesized through dehydration of l-leucine and pyromellitic dianhydride followed by the treating with thionyl chloride and subsequent reaction with 4,4′-diamino diphenylether in dry tetrahydrofuran. Several novel optically active poly(amide-ether-imide-urea)s (PAEIUs) with inherent viscosities of 0.37–0.46 dL g−1 are synthesized via the polymerization of compound 5 with various diisocyanates under different catalytic conditions. The obtained PAEIUs are characterized by means of FT-IR, 1H-NMR, elemental analysis, and specific rotation measurement techniques. The new polymers are readily soluble in polar organic solvents such as N,N-dimethyacetamide, N,N-dimethyformamide, and dimethyl sulfoxide, while the evaluation of their thermal stability by thermogravimetric analysis and differential scanning calorimetry confirmed their moderate to good thermal stability. Compared with our previous work, here, we have different functional groups in the main chain which provide novel polymers with much better solubility while maintaining reasonable thermal properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Roland CM (2007) Rubber technologist’s handbook, vol 2. RAPRA, Shrewsbury

    Google Scholar 

  2. Roland CM, Casalini R (2007) Effect of hydrostatic pressure on the viscoelastic response of polyurea. Polymer 48:5747–5752

    Article  CAS  Google Scholar 

  3. Roland CM, Twigg JN, Vu Y, Mott PH (2007) High strain rate mechanical behavior of polyurea. Polymer 48:574–578

    Article  CAS  Google Scholar 

  4. Sarva SS, Deschanel S, Bouce MC, Chen W (2007) Stress–strain behavior of a polyurea and a polyurethane from low to high strain rates. Polymer 48:2208–2213

    Article  CAS  Google Scholar 

  5. Ni H, Skaja AD, Soucek MD (2000) Acid-catalyzed moisture-curing polyurea/polysiloxane ceramer coatings. Prog Org Coat 40:175–184

    Article  CAS  Google Scholar 

  6. Du Z, Qiu T, Zhou Q, Wang X, Liu D (2001) Synthesis and characterization of a novel kind of thermotropic liquid crystalline poly(urea-ester)s based on bis(4′-hydroxyphenyl)-tolyene-2,4-diurea. J Appl Polym Sci 82:577–583

    Article  CAS  Google Scholar 

  7. Sakai H, Tanaka K, Fukushima H, Tsuchiya K, Sakai K, Kondo T, Abe M (2008) Preparation of polyurea capsules using electrocapillary emulsification. Colloids Surface B: Biointerfaces 66:287–290

    Article  CAS  Google Scholar 

  8. Hong K, Park S (2000) Preparation of polyurea microcapsules containing ovalbumin. Mater Chem Phys 64:20–24

    Article  CAS  Google Scholar 

  9. Ley SV, Ramarao C, Lee AL, Ostergaard N, Smith SC, Shirley IM (2003) Microencapsulation of osmium tetroxide in polyurea. Org Lett 5:185–187

    Article  CAS  Google Scholar 

  10. Tao XT, Watanabe T, Zou DC, Shimoda S, Sato H, Miyata S (1995) Polyurea with large positive birefringence for second harmonic generation. Macromolecules 28:2637–2643

    Article  CAS  Google Scholar 

  11. Kurita K, Masuda M, Aibe S, Kurakami K, Ishii S, Nishimura SI (1994) Synthetic carbohydrate polymers containing trehalose residues in the main chain: preparation and characteristic properties. Macromolecules 27:7544–7549

    Article  CAS  Google Scholar 

  12. Sendijarevic V, Sendijarevic A, Sendijarevic I (2004) Hydrolytic stability of toluene diisocyanate and polymeric methylenediphenyl diisocyanate based polyureas under environmental conditions. Environ Sci Technol 38:1066–1072

    Article  CAS  Google Scholar 

  13. Yang Y, Zhi Z, Yang X, Lu L, Wang X (1998) Synthesis and characterization of novel polyurea-imides. Eur Polym J 34:1893–1897

    Article  Google Scholar 

  14. Luo N, Wang DN, Ying SK (1996) Study on sequence distribution of segmented poly(urethane-urea)s by 13C-NMR spectroscopy: effect of polymerization procedures. J Polym Sci Part A: Polym Chem 34:2157–2161

    Article  CAS  Google Scholar 

  15. Zhai ZD, Shi YP, Wang T (2005) Development and validation of HPLC methods for enantioseparation of mirtazapine enantiomers at analytical and semipreparative scale using polysaccharide chiral stationary phases. Anal Chim Acta 550:123–129

    Article  CAS  Google Scholar 

  16. Zhong Q, Han X, He L, Beesey TE, Trahanovsky WS, Armstrong DW (2005) Chromatographic evaluation of poly(trans-1,2-cyclohexanediyl-bis-acrylamide) as a chiral stationary phase for HPLC. J Chromatogr A 1066:55–70

    Article  CAS  Google Scholar 

  17. Gasparrini F, Misiti D, Rompietti R, Villani C (2005) New hybrid polymeric liquid chromatography chiral stationary phase prepared by surface-initiated polymerization. J Chromatogr A 1064:25–38

    Article  CAS  Google Scholar 

  18. Lee KP, Choi SH, Kim SY, Kim TH, Ryoo JJ, Ohta K, Jin JY, Takeuchi T, Fujimoto C (2003) Comparison of monomeric and polymeric chiral stationary phases. J Chromatogr A 987:111–118

    Article  CAS  Google Scholar 

  19. Lindholm J, Forstedt T (2005) Investigation of the adsorption behaviour of a chiral model compound on a tartardiamide-based network-polymeric chiral stationary phase. J Chromatogr A 1095:50–59

    Article  CAS  Google Scholar 

  20. Mallakpour S, Kolahdoozan M (2008) Microwave-accelerated preparation of aromatic polyamides containing phthalimide and S-valine pendant groups in ionic liquids. Iran Polym J 17:531–539

    CAS  Google Scholar 

  21. Mallakpour S, Rafiee Z (2009) Expeditious synthesis of novel aromatic polyamides from 5-[3-phenyl-2-(9,10-dihydro-9,10-ethanoanthracene-11,12-dicarboximido)-propanoylamino]isophthalic acid and various diamines using microwave-assisted polycondensation. React Funct Polym 69:252–258

    Article  CAS  Google Scholar 

  22. Mallakpour S, Kolahdoozan M (2007) Synthesis and properties of thermally stable and optically active novel wholly aromatic polyesters containing a chiral pendent group. Eur Polym J 43:3344–3354

    Article  CAS  Google Scholar 

  23. Mallakpour S, Refiee Z (2008) Application of microwave-assisted reactions in step-growth polymerization: a review. Iran Polym J 17:907–935

    CAS  Google Scholar 

  24. Mallakpour S, Kolahdoozan M (2008) Synthesis and properties of novel soluble aromatic polyamides derived from 5-(2-phthalimidyl-3-methyl butanoylamino)isophthalic acid and aromatic diamines. React Funct Polym 68:91–96

    Article  CAS  Google Scholar 

  25. Mallakpour S, Seyedjamali H (2009) Fast synthesis of optically active polyamides containing l-methionine linkages in ionic liquid via a microwave-assisted process. Colloid Polym Sci 287:1111–1116

    Article  CAS  Google Scholar 

  26. Mallakpour S, Habibi S (2003) Microwave-promoted synthesis of new optically active poly(ester-imide)s derived from N,N′-(pyromellitoyl)-bis-l-leucine diacid chloride and aromatic diols. Eur Polym J 39:1823–1829

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this research from Research Affairs Division Isfahan University of Technology and Center of Excellency in Sensors and Green Chemistry Research (IUT) and National Elite Foundation (NEF) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadpour Mallakpour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallakpour, S., Seyedjamali, H. Design and synthesis of novel organosoluble chiral poly(amide-ether-imide-urea) containing l-leucine moieties in the main chain. Colloid Polym Sci 288, 703–710 (2010). https://doi.org/10.1007/s00396-010-2202-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-010-2202-1

Keywords

Navigation