Colloid and Polymer Science

, Volume 288, Issue 5, pp 573–578 | Cite as

Crystallization-induced aggregation of block copolymer micelles: influence of crystallization kinetics on morphology

  • Adriana M. Mihut
  • Jérôme J. Crassous
  • Holger SchmalzEmail author
  • Matthias BallauffEmail author
Short Communication


We present a systematic investigation of the crystallization and aggregation behavior of a poly(1,2-butadiene)-block-poly(ethylene oxide) diblock copolymer (PB-b-PEO) in n-heptane. n-Heptane is a poor solvent for PEO and at 70°C the block copolymer self-assembles into spherical micelles composed of a liquid PEO core and a soluble PB corona. Time- and temperature-dependent light scattering experiments revealed that when crystallization of the PEO cores is induced by cooling, the crystal morphology depends on the crystallization temperature (T c ): Below 30°C, the high nucleation rate of the PEO core dictates the growth of the crystals by a fast aggregation of the micelles into meander-like (branched) structures due to a depletion of the micelles at the growth front. Above 30°C the nucleation rate is diminished and a relatively small crystal growth rate leads to the formation of twisted lamellae as imaged by scanning force microscopy. All data demonstrate that the formation mechanism of the crystals through micellar aggregation is dictated by two competitive effects, namely, by the nucleation and growth of the PEO core.


Block copolymer Crystalline micelles Self- assembly Selective solvent 



Financial support by the Deutsche Forschungsgemeinsschaft, SFB 840, Bayreuth, is gratefully acknowledged. We thank Dieter Gräbner (University of Bayreuth, BZKG) for conducting the DSC measurements. A.M.M. acknowledge the financial support from the European Community’s “Marie-Curie Actions” under Contract No. MRTN-CT-2004-504052 [POLYFILM].


  1. 1.
    Lotz B, Kovacs AJ (1966) Kolloid-Z Z Polym 209:97–114CrossRefGoogle Scholar
  2. 2.
    Lotz B, Kovacs AJ, Bassett GA, Keller A (1966) Kolloid-Z Z Polym 209:115–128CrossRefGoogle Scholar
  3. 3.
    Lin EK, Gast AP (1996) Macromolecules 29:4432–4441CrossRefGoogle Scholar
  4. 4.
    Vilgis T, Halperin A (1991) Macromolecules 24:2090–2095CrossRefGoogle Scholar
  5. 5.
    Richter D, Schneiders D, Monkenbusch M, Willner L, Fetters LJ, Huang JS, Lin M, Mortensen K, Farago B (1997) Macromolecules 30:1053–1068CrossRefGoogle Scholar
  6. 6.
    Massey JA, Temple K, Cao L, Rharbi Y, Raez J, Winnik MA, Manners IJ (2000) Am Chem Soc 122:11577–11584CrossRefGoogle Scholar
  7. 7.
    Xu JT, Fairclough JPA, Mai SM, Ryan AJJ (2003) Mater Chem 13:2740–2748CrossRefGoogle Scholar
  8. 8.
    Shen L, Wang H, Guerin G, Wu C, Manners I, Winnik M (2008) Macromolecules 41:4380–4389CrossRefGoogle Scholar
  9. 9.
    Du Z-X, Xu J-T, Fan Z-Q (2008) Macromol Rapid Commun 29:467–471CrossRefGoogle Scholar
  10. 10.
    Du Z-X, Xu J-T, Fan Z-Q (2007) Macromolecules 40:7633–7637CrossRefGoogle Scholar
  11. 11.
    Fu J, Luan B, Yu X, Cong Y, Li J, Pan C, Han Y, Yang Y, Li B (2004) Macromolecules 37:976–986CrossRefGoogle Scholar
  12. 12.
    Xu JT, Jin W, Liang GD, Fan ZQ (2005) Polymer 46:1709–1716CrossRefGoogle Scholar
  13. 13.
    Cao L, Manners I, Winnik MA (2002) Macromolecules 35:8258–8260CrossRefGoogle Scholar
  14. 14.
    Schmalz H, Schmelz J, Drechsler M, Yuan J, Walther A, Schweimer K, Mihut AM (2008) Macromolecules 41:3235–3242CrossRefGoogle Scholar
  15. 15.
    Zheng JX, Xiong HM, Chen WY, Lee KM, Van Horn RM, Quirk RP, Lotz B, Thomas EL, Shi AC, Cheng SZD (2006) Macromolecules 39:641–650CrossRefGoogle Scholar
  16. 16.
    Guerin G, Raez J, Manners I, Winnik MA (2005) Macromolecules 38:7819–7827CrossRefGoogle Scholar
  17. 17.
    Raez J, Barjovanu R, Massey JA, Winnik MA, Manners I (2000) Angew Chem Int Ed 39:3862–3865CrossRefGoogle Scholar
  18. 18.
    Raez J, Tomba JP, Manners I, Winnik MAJ (2003) Am Chem Soc 125:9546–9547CrossRefGoogle Scholar
  19. 19.
    Mihut AM, Chiche A, Drechsler M, Schmalz H, Cola ED, Krausch G, Ballauff M (2009) Soft Matter 5:208–213CrossRefGoogle Scholar
  20. 20.
    Mihut AM, Drechsler M, Möller M, Ballauff M (2009) Macromol Rapid Commun. doi: 10.1002/marc.200900571
  21. 21.
    Xu J-T, Fairclough JPA, Mai S-M, Ryan AJJ (2003) Mater Chem 13:2740–2748CrossRefGoogle Scholar
  22. 22.
    Schmalz H, Lanzendörfer MG, Abetz V, Müller AHE (2003) Macromol Chem Phys 204:1056–1071CrossRefGoogle Scholar
  23. 23.
    Schmalz H, Knoll A, Müller AJ, Abetz V (2002) Macromolecules 35:10004–10013CrossRefGoogle Scholar
  24. 24.
    Castillo RV, Arnal ML, Müller AJ, Hamley IW, Castelletto V, Schmalz H, Abetz V (2004) Macromolecules 41:879–889CrossRefGoogle Scholar
  25. 25.
    Reiter G, Hörner P, Hurtrez G, Riess G, Sommer JU, Joanny JFJ (1998) Surf Sci Technol 14:93–103Google Scholar
  26. 26.
    Sommer J-U, Reiter GJ (2000) Chem Phys 112:4384–4393Google Scholar
  27. 27.
    Reiter G, Sommer J-U (2000) J Chem Phys 112:4376–4383CrossRefGoogle Scholar
  28. 28.
    Lazzari M, Scalarone D, Vazquez-Vazquez C, Lopez-Quintela MA (2008) Macromol Rapid Commun 29:352–357CrossRefGoogle Scholar
  29. 29.
    Gädt T, Ieong NS, Cambridge G, Winnik MA, Manners I (2009) Nat Mater 8:144–150CrossRefGoogle Scholar
  30. 30.
    Arlie J, Spegt P, Skoulios A (1967) Makromol Chem 104:212–229CrossRefGoogle Scholar
  31. 31.
    Kovacs A, Straupe C (1980) J Cryst Growth 48:210–226CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Physical Chemistry IUniversity BayreuthBayreuthGermany
  2. 2.Adolphe Merkle InstituteUniversity FribourgMarlySwitzerland
  3. 3.Macromolecular Chemistry IIUniversity BayreuthBayreuthGermany
  4. 4.Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin fr Materialien und Energie GmbHBerlinGermany
  5. 5.Department of PhysicsHumboldt University BerlinBerlinGermany

Personalised recommendations