Skip to main content
Log in

Hydrolytic reactivities of p-nitrophenyl picolinate accelerated by Schiff base Co(II) complexes in micellar solutions

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Two Schiff base Co(II) complexes were synthesized and used to catalyze the hydrolysis of p-nitrophenyl picolinate (PNPP) in Gemini 16-2-16 micellar solution. For comparison, hydrolytic kinetics of PNPP was respectively investigated in the micellar solutions of three kinds of conventional single-chain cationic, anionic, and nonionic surfactants, i.e., hexadecyltrimethylammonium bromide (CTAB), n-lauroylsarcosine sodium (LSS), and polyoxyethylene(23) lauryl ether (Brij35). Experimental results showed that the one complex with small Schiff base ligands exhibited better catalytic activity than the other one with bigger ligands towards the PNPP hydrolysis under comparable conditions, which testified that a relatively open catalytic site is essential for tuning the activities of the two mimic hydrolases. Moreover, compared effects of various micellar solutions demonstrated that Gemini 16-2-16 micellar solution is the best reaction medium relative to its single-chain analogs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5

References

  1. Scarpellini M, Neves A, Hörner R, Bortoluzzi AJ, Szpoganics B, Zucco C, Nome Silva RA, Drago V, Mangrich AS, Ortiz WA, Passos WA, de Oliveira MC, Terenzi H (2003) Inorg Chem 42:8353

    Article  CAS  Google Scholar 

  2. Gahan LR, Smith SJ, Neves A, Schenk G (2009) Eur J Inorg Chem 2009:2745

    Article  Google Scholar 

  3. Kou XM, Cheng SQ, Du J, Yu XQ, Zeng XC (2004) J Mol Catal A: Chem 210:23

    Article  CAS  Google Scholar 

  4. Hu W, Li JZ, Wang Y, Li C, Du J, Meng XG, Hu CW, Zeng XC (2006) Chin J Chem 24:1498

    Article  CAS  Google Scholar 

  5. Hu W, Wang Y, Yan J, Li JZ, Meng XG, Hu CW, Zeng XC (2006) J Disper Sci Technol 27:1085

    Article  CAS  Google Scholar 

  6. Zhang ZS, Yu XM, Fong LK, Margerum LD (2001) Inorg Chim Acta 317:72

    Article  CAS  Google Scholar 

  7. Jiang WD, Xu B, Li JZ, Liu FA, Chen H, Zeng XC (2006) J Disper Sci Technol 27:869

    Article  Google Scholar 

  8. Xu B, Jiang WD, Li JZ, Lin Q, Liu FA (2008) J Disper Sci Technol 9:1319

    Article  Google Scholar 

  9. Jiang WD, Xu B, Li JZ, Lin Q, Zeng XC, Chen H (2006) Prog React Kinet Mec 31:11

    CAS  Google Scholar 

  10. Jiang WD, Xu B, Lin Q, Li JZ, Liu FA, Zeng XC, Chen H (2008) Colloid Surface A 315:103

    Article  CAS  Google Scholar 

  11. Jiang WD, Xu B, Li JZ, Lin Q, Zeng XC, Chen H (2007) Int J Chem Kinet 315:672

    Article  Google Scholar 

  12. Zhang J, Meng XG, Zeng XC, Yu XQ (2009) Coord Chem Rev 253:2166

    Article  CAS  Google Scholar 

  13. Griffiths PC, Fallis IA, Willock DJ, Paul A, Barrie CL, Griffiths PM, Williams GM, King SM, Heenan RK, Görgl R (2004) Chem Eur J 10:2022

    Article  CAS  Google Scholar 

  14. Bhattacharya S, Kumar N (2009) Coord Chem Rev 253:2133

    Article  CAS  Google Scholar 

  15. Menger FM, Keiper JS (2000) Angew Chem Intern Ed Engl 39:1906

    Article  Google Scholar 

  16. Bhattacharya S, Kumar VP (2004) J Org Chem 69:559

    Article  CAS  Google Scholar 

  17. Qiu LG, Xie AJ, Shen YH (2006) J Mol Catal A-Chem 244:58

    Article  CAS  Google Scholar 

  18. Ghosh KK, Kolay S, Bal S, Satnami ML, Quagliotto P, Dafonte PR (2008) Colloid Polym Sci 286:293

    Article  CAS  Google Scholar 

  19. Bhattacharya S, Kumar VP (2005) Langmuir 21:71

    Article  CAS  Google Scholar 

  20. Jiang WD, Xu B, Lin Q, Li JZ, Fu HY, Zeng XC, Chen H (2007) J Colloid Interf Sci 311:530

    Article  CAS  Google Scholar 

  21. Zeng W, Li JZ, Mao ZH, Hong Z, Qin SY (2004) Adv Synth Catal 346:1385

    Article  CAS  Google Scholar 

  22. Zana R, Benrraou M, Rueff R (1991) Langmuir 7:1072

    Article  CAS  Google Scholar 

  23. Sigman DS, Gutsche CT (1972) J Am Chem Soc 94:724

    Article  Google Scholar 

  24. Ge QC, Guo YH, Lin H, Gao DZ, Lin HK, Zhu SR (2004) Can J Chem 82:409

    Article  CAS  Google Scholar 

  25. Makinen MW, Kuo LC, Dymowski JJ, Jaffer S (1979) J Biol Chem 254:356

    CAS  Google Scholar 

  26. Reinaud O, Mest YL, Jabin I (2007) Models of metallo-enzyme active sites. In: Vicens J, Harrowfield J (eds) Calixarenes and enzyme mimicry [M], Chapter 13. Springer, Netherlands, pp 259–285

    Google Scholar 

  27. Choi TS, Shimizu Y, Shirai H, Hamada K (2000) Dyes Pigm 45:145

    Article  CAS  Google Scholar 

  28. Bhattacharya S, Snehalatha K (1995) Langmuir 11:4653

    Article  CAS  Google Scholar 

  29. Bhattacharya S, Snehalatha K (1997) J Org Chem 62:2198

    Article  CAS  Google Scholar 

  30. Bhattacharya S, Snehalatha K, George SK (1998) J Org Chem 63:27

    Article  CAS  Google Scholar 

  31. Bhattacharya S, Snehalatha K, Kumar VP (2003) J Org Chem 68:2741

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Project of China Sichuan Province Education Office (No. 08ZA160) and the Scientific Research Foundation for the PhD (Sichuan University of Science and Engineering, No: 09ZR17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, B., Jiang, W., Li, J. et al. Hydrolytic reactivities of p-nitrophenyl picolinate accelerated by Schiff base Co(II) complexes in micellar solutions. Colloid Polym Sci 288, 347–352 (2010). https://doi.org/10.1007/s00396-009-2162-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-009-2162-5

Keywords

Navigation