Skip to main content
Log in

Development and in vitro cytotoxicity of microparticle drug delivery system for proteins using l-tyrosine polyphosphate

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

l-Tyrosine polyphosphate (LTP), a “pseudo” poly (amino acid) polymer is characterized by a rapid degradation rate. Subsequently, formulation of a drug delivery system has been investigated by encapsulating fluorescein isothiocyanate–bovine serum albumin (FITC-BSA) within LTP microparticles. Characterization of surface morphology shows a mixture of spherical and discoid particles with a slightly rough surface morphology for all microparticle formulations. Dynamic laser light scattering (DLS) shows a decrease in particle diameters and size distribution upon FITC-BSA encapsulation. LTP microparticles are found to degrade over a period of 7 days, and complete release of FITC-BSA is observed over a period of 6 days. Cytotoxicity evaluation of LTP microparticles indicates that these microparticles do not cause severe cell death in cultured primary human dermal fibroblasts over a period of 10 days. Therefore, the LTP microparticles are promising candidates for short-term protein delivery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Banga AK, Chien YW (1988) Int J Pharm 48:15

    Article  CAS  Google Scholar 

  2. Lee VHL (1987) Pharm Technol 11:26

    CAS  Google Scholar 

  3. Shire SJ (1987) Pharm Technol 11:34

    Google Scholar 

  4. Lee VH (1988) Crit Rev Ther Drug Carrier Syst 5:34

    Google Scholar 

  5. Langer R (2000) Acc Chem Res 33:94

    Article  CAS  Google Scholar 

  6. Gombotz R, Pettit DK (1995) Bioconjug Chem 6:332

    Article  CAS  Google Scholar 

  7. O'Hagan DT, Jeffrey H, Davis SS (1994) Int J Pharm 103:37

    Article  Google Scholar 

  8. Ogawa Y, Yamamoto M, Okada T, Yashiki T, Shimamoto T (1998) Chem Pharm Bull 36:1095

    Google Scholar 

  9. Rafati H, Coomber AGA, Adler J, Holland J, Davis SS (1997) J Control Release 43:89

    Article  CAS  Google Scholar 

  10. Song CX, Labhasetwar V, Murphy H, Qu X, Humphrey WR, Shebuski RJ, Levy RJ (1997) J Control Release 43:197

    Article  Google Scholar 

  11. Sen Gupta A, Lopina ST (2004) Polymer 45:4563

    Google Scholar 

  12. Sen Gupta A, Lopina ST (2005) Polymer 46:2133

    Article  CAS  Google Scholar 

  13. Ditto AJ, Shah PN, Lopina ST, Yun YH (2009) Int J Pharm 368:199

    Article  CAS  Google Scholar 

  14. Berkland C, Kipper MJ, Narasimhan B, Kyekyoon K, Pack DW (2004) J Control Release 94:129

    Article  CAS  Google Scholar 

  15. Wei G, Pettway GJ, McCauley LK, Ma PX (2004) Biomaterials 25:345

    Article  CAS  Google Scholar 

  16. Aubert-Pouessel A, Venier-Julienne MC, Clavreul A, Sergent M, Jollivet C, Montero-Menei CN, Garcion E, Bibby DC, Menei P, Benoit JP (2004) J Control Release 95:463

    Article  CAS  Google Scholar 

  17. Yun YH, Goetz DJ, Yellen P, Chen W (2004) Biomaterials 25:147

    Article  CAS  Google Scholar 

  18. Zisch AH, Luttolf MP, Hubbell JA (2003) Cardiovasc Pathol 12:295

    Article  CAS  Google Scholar 

  19. Babensee JE, McIntire LV, Mikos AG (2000) Pharm Res 17(5):497

    Article  CAS  Google Scholar 

  20. Richardson TP, Peters MC, Ennett AB, Mooney DJ (2001) Nat Biotechnol 19:1029

    Article  CAS  Google Scholar 

  21. Sun SW, Jeong YI, Jun SW, Kim SH (2003) J Microencapsul 20:479

    Article  CAS  Google Scholar 

  22. Gorner T, Gref R, Michenot D, Sommer F, Tran MN, Dellacherie E (1999) J Control Release 57:259

    Article  CAS  Google Scholar 

  23. McGee JP, Davis SS, O'Hagan DT (1995) J Control Release 34:77

    Article  CAS  Google Scholar 

  24. Hariharan M, Price JC (2002) J Microencapsul 19:95

    Article  CAS  Google Scholar 

  25. Zilberman M, Shraga I (2006) J Biomed Mater Res 79A:370

    Article  CAS  Google Scholar 

  26. Wu XS (1995) Preparation, characterization, and drug delivery applications of microspheres based on biodegradable lactic/glycolic acid polymers. In: Wise DL (ed) Encyclopedic handbook of biomaterials and bioengineering. Marcel Dekker, New York, p 1151

    Google Scholar 

  27. Vishwanathan NB, Patil SS, Pandit JK, Lele AK, Kulkarni MG, Mashelkar RA (2001) J Microencapsul 18:783

    Article  Google Scholar 

  28. International Organization of Standardization (1992) Biological evaluation of medical devices—part 5: tests for cytotoxicity: in vitro methods, ISO/DIS 10993–5 (EN 30993–5). International Organization of Standardization, Geneva

    Google Scholar 

  29. Ratner BD (2004) Introduction to testing biomaterials. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) Biomaterials science: an introduction to materials in medicine. Elsevier, New York, p 355

    Google Scholar 

  30. Kichler A, Leborgne C, Coyetaux E, Danos O (2001) J Gene Med 3:135

    Article  CAS  Google Scholar 

  31. Amiji MM (1997) Carbohydr Polym 32:193

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang H. Yun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, P.N., Puntel, A.A., Lopina, S.T. et al. Development and in vitro cytotoxicity of microparticle drug delivery system for proteins using l-tyrosine polyphosphate. Colloid Polym Sci 287, 1195–1205 (2009). https://doi.org/10.1007/s00396-009-2082-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-009-2082-4

Keywords

Navigation