Skip to main content
Log in

Drop size dependence of contact angles on two fluoropolymers

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Young’s equation predicts that the contact angle of a liquid drop is independent of its size. Nevertheless, large drop size dependences of contact angles have been observed, especially for millimetre-sized drops, on a variety of solid surfaces. We report new measurements of drop size dependence of contact angles for several liquids on two fluoropolymer surfaces, Teflon AF 1600 and EGC-1700. We demonstrate a new strategy for contact angle measurement that allows detection of approximately 0.1° changes in the contact angle during the growth of a drop. We find that on the surfaces examined, drop size dependence of contact angles is ten times smaller than on all previously studied fluoropolymers at the millimetre scale. The data are insensitive to various attempted surface modifications. We discuss the interpretation of the data and possible physical sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mugele F, Baret JC (2005) Electrowetting: from basics to applications. J Phys Condens Matter 17:R705

    Article  CAS  Google Scholar 

  2. Amirfazli A, Neumann AW (2004) Status of the three-phase line tension. Adv Colloid Interface Sci 110:121

    Article  CAS  Google Scholar 

  3. Indekeu JO (1994) Line tension at wetting. Int J Mod Phys B 8:309

    Article  CAS  Google Scholar 

  4. Schneemilch M, Quirke N (2007) Effect of oxidation on the wettability of poly(dimethylsiloxane) surfaces. J Chem Phys 127:114701

    Article  CAS  Google Scholar 

  5. David R, Neumann AW (2007) Empirical equation to account for the length dependence of line tension. Langmuir 23:11999

    Article  CAS  Google Scholar 

  6. Good RJ, Koo MN (1979) The effect of drop size on contact angle. J Colloid Interface Sci 71:283

    Article  CAS  Google Scholar 

  7. Drelich J, Miller JD (1994) The effect of solid surface heterogeneity and roughness on the contact angle/drop (bubble) size relationship. J Colloid Interface Sci 164:252

    Article  CAS  Google Scholar 

  8. Checco A, Guenoun P, Daillant J (2003) Nonlinear dependence of the contact angle of nanodroplets on contact line curvature. Phys Rev Lett 91:186101

    Article  CAS  Google Scholar 

  9. Amirfazli A, Hänig S, Müller A, Neumann AW (2000) Measurements of line tension for solid–liquid–vapor systems using drop size dependence of contact angles and its correlation with solid-liquid interfacial tension. Langmuir 16:2024

    Article  CAS  Google Scholar 

  10. Mugele F, Becker T, Nikopoulos R, Kohonen M, Herminghaus S (2002) Capillarity at the nanoscale: an AFM view. J Adhes Sci Technol 16:951

    Article  CAS  Google Scholar 

  11. Chen P, Susnar SS, Amirfazli A, Mak C, Neumann AW (1997) Line tension measurements: an application of the quadrilateral relation to a liquid lens system. Langmuir 13:3035

    Article  CAS  Google Scholar 

  12. Dussaud A, Vignes-Adler M (1997) Wetting transition of n-alkanes on concentrated aqueous salt solution. Line tension effect. Langmuir 13:581

    Article  CAS  Google Scholar 

  13. Stöckelhuber KW, Radoev B, Schulze HJ (1999) Some new observations on line tension of microscopic droplets. Colloids Surf A 156:323

    Article  Google Scholar 

  14. David R, Dobson SM, Tavassoli Z, Cabezas MG, Neumann AW (2009) Investigation of the Neumann triangle for dodecane liquid lenses on water. Colloids Surf A 333:12

    Article  CAS  Google Scholar 

  15. Duncan D, Li D, Gaydos J, Neumann AW (1995) Correlation of line tension and solid-liquid interfacial tension from the measurement of drop size dependence of contact angles. J Colloid Interface Sci 169:256

    Article  CAS  Google Scholar 

  16. Tavana H, Neumann AW (2007) Recent progress in the determination of solid surface tensions from contact angles. Adv Colloid Interface Sci 132:1

    Article  CAS  Google Scholar 

  17. Tavana H, Simon F, Grundke K, Kwok DY, Hair ML, Neumann AW (2005) Interpretation of contact angle measurements on two different fluoropolymers for the determination of solid surface tension. J Colloid Interface Sci 291:497

    Article  CAS  Google Scholar 

  18. Cabezas MG, Bateni A, Montanero JM, Neumann AW (2006) Determination of surface tension and contact angle from the shapes of axisymmetric fluid interfaces without use of apex coordinates. Langmuir 22:10053

    Article  CAS  Google Scholar 

  19. Lam CNC, Wu R, Li D, Hair M, Neumann AW (2002) Study of the advancing and receding contact angles: liquid sorption as a cause of contact angle hysteresis. Adv Colloid Interface Sci 96:169

    Article  CAS  Google Scholar 

  20. Tavana H, Jehnichen D, Grundke K, Hair ML, Neumann AW (2007) Contact angle hysteresis on fluoropolymer surfaces. Adv Colloid Interface Sci 134–135:236

    Article  CAS  Google Scholar 

  21. Gu Y, Li D, Cheng P (1996) Determination of line tension from the shape of axisymmetric liquid–vapor interfaces around a conic cylinder. J Colloid Interface Sci 180:212

    Article  CAS  Google Scholar 

  22. Asekomhe SO, Elliott JAW (2003) The effect of interface deformation due to gravity on line tension measurement by the capillary rise in a conical tube. Colloids Surf A 220:271–278

    Article  CAS  Google Scholar 

  23. Amirfazli A, Chatain D, Neumann AW (1998) Drop size dependence of contact angles for liquid tin on silica surface: line tension and its correlation with solid–liquid interfacial tension. Colloids Surf A 142:183

    Article  CAS  Google Scholar 

  24. Drelich J, Wilbur JL, Miller JD, Whitesides GM (1996) Contact angles for liquid drops at a model heterogeneous surface consisting of alternating and parallel hydrophobic/hydrophilic stripes. Langmuir 12:1913

    Article  CAS  Google Scholar 

Download references

Acknowledgements

RD thanks Prof. Joelle Frechette for raising the question of whether surfaces were amorphous or crystalline. We thank 3M Canada for the generous donation of EGC-1700 and acknowledge funding from grant 8278 and a postdoctoral fellowship (RD), both from the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert David.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Summary of experimental data on modified surfaces (details in text). (DOC 48 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

David, R., Park, M.K., Kalantarian, A. et al. Drop size dependence of contact angles on two fluoropolymers. Colloid Polym Sci 287, 1167–1173 (2009). https://doi.org/10.1007/s00396-009-2077-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-009-2077-1

Keywords

Navigation