Skip to main content
Log in

Surface adsorption and micelle formation of aqueous solutions of polyethyleneglycol and sugar surfactants

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The surface tension of aqueous solutions of tetraethyleneglycol octyl ether (C8E4) and octyl-β-d-maltopyranoside (OM) mixture was measured as a function of the total molality of surfactants and the composition of OM under atmospheric pressure at 298.15 K by drop volume technique. The results of surface tension measurements were analyzed by originally developed thermodynamic equations, then phase diagrams of adsorption and micelle formation were constructed. From the analysis of the surface tension data, it was found that the C8E4 and OM molecules interact attractively in the adsorbed film and the excess Gibbs energy of adsorption can be compared with those observed in typical cationic–nonionic surfactant systems; nevertheless, they are mixed almost ideally in the mixed micelle. Judging from a negative excess surface area calculated by differentiating the excess Gibbs energy by the surface tension, we concluded that the attraction between C8E4 and OM molecules is a short-range one originated in the hydrogen bonding between them which favors the planar configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Söderman O, Johansson I (2000) Curr Opin Colloid Interface Sci 4:391

    Article  Google Scholar 

  2. Hoffmann B, Platz G (2001) Curr Opin Colloid Interface Sci 6:171

    Article  CAS  Google Scholar 

  3. Hato M (2001) Curr Opin Colloid Interface Sci 6:268

    Article  CAS  Google Scholar 

  4. Stubenrauch C (2001) Curr Opin Colloid Interface Sci 6:160

    Article  CAS  Google Scholar 

  5. Strey R (1994) Colloid Polym Sci 272:1005

    Article  CAS  Google Scholar 

  6. Shinoda K, Carlsson A, Lindman B (1996) Adv Colloid Interface Sci 64:253

    Article  CAS  Google Scholar 

  7. Möller A, Lang P, Findenegg GH, Keiderling U (1998) J Chem Phys B 102:8958

    Article  Google Scholar 

  8. Sierra ML, Svensson M (1999) Langmuir 15:2301

    Article  CAS  Google Scholar 

  9. Liljekvist P, Kronberg B (2000) J Colloid Interface Sci 222:165

    Article  CAS  Google Scholar 

  10. Matsubara H, Obata H, Matsuda T, Takiue T, Aratono M (2008) Colloid and Surfaces A 315:183

    Article  CAS  Google Scholar 

  11. Wongwailikhit K, Ohta A, Seno K, Nomura A, Shinozuka T, Takiue T, Aratono M (2001) J Phys Chem B 105:1462

    Article  Google Scholar 

  12. Kjellander R, Florin E (1981) J Chem Soc Faraday Trans I 77:2053

    Article  CAS  Google Scholar 

  13. Schubert KV, Strey R, Kahlweit M (1991) Prog Colloid Polym Sci 84:103

    Article  CAS  Google Scholar 

  14. Schubert KV, Strey R, Kahlweit M (1991) J Colloid Interface Sci 141:21

    Article  CAS  Google Scholar 

  15. Lando JL, Oakley HT (1967) J Colloid Interface Sci 25:526

    Article  CAS  Google Scholar 

  16. Motomura K, Iwanaga S, Hayami Y, Uryu S, Matuura R (1981) J Colloid Interface Sci 80:32

    Article  CAS  Google Scholar 

  17. Aratono M, Villeneuve M, Takiue T, Ikeda N, Iyota H (1998) J Colloid Interface Sci 200:161

    Article  CAS  Google Scholar 

  18. Matsuki H, Ikeda N, Aratono M, Kaneshina S, Motomura K (1992) J Colloid Interface Sci 150:331

    Article  CAS  Google Scholar 

  19. Aveyard R, Binks BP, Chen J, Esquena J, Fletcher PDI, Buscall R, Davis S (1998) Langmuir 14:4699

    Article  CAS  Google Scholar 

  20. Boyd BJ, Drummond CJ, Krodkiewska I, Grieser F (2000) Langmuir 16:7359

    Article  CAS  Google Scholar 

  21. Matsubara H, Ohta A, Kameda M, Ikeda N, Aratono M (2000) Langmuir 16:7589

    Article  CAS  Google Scholar 

  22. Matsubara H, Muroi S, Kameda M, Ikeda N, Ohta A, Aratono M (2003) Langmuir 17:7752

    Article  Google Scholar 

  23. Iyota H, Todoroki N, Ikeda N, Motomura K, Ohta A, Aratono M (1999) J Colloid Interface Sci 216:41

    Article  CAS  Google Scholar 

  24. Aratono M, Ohta A, Minamizawa H, Ikeda N, Iyota H, Takiue T (1999) J Colloid Interface Sci 217:128

    Article  CAS  Google Scholar 

  25. Aratono M, Onimaru N, Yoshikai Y, Shigehisa M, Koga I, Wongwailikhit K, Ohta A, Takiue T, Lhoussaine B, Strey R, Takata Y, Villeneuve M, Matsubara H (2007) J Phys Chem B 111:107

    Article  CAS  Google Scholar 

  26. Matsubara H, Eguchi T, Takumi H, Tsuchiya K, Takiue T, Aratono M. (2009) J Phys Chem B

  27. Engelskirchen S, Acharya DP, Gracia-Roman M, Kunieda H (2006) Colloid Surf A 279:113

    Article  CAS  Google Scholar 

Download references

Acknowledgement

HM is pleased to acknowledge financial support from the Japan Society for the Promotion of Science (Grant in Aid for Young Scientists (B), No. 19750117).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Matsubara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsubara, H., Takumi, H., Takamatsu, T. et al. Surface adsorption and micelle formation of aqueous solutions of polyethyleneglycol and sugar surfactants. Colloid Polym Sci 287, 1077–1082 (2009). https://doi.org/10.1007/s00396-009-2066-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-009-2066-4

Keywords

Navigation