Skip to main content
Log in

Preparation of styrene polymer/ZnO nanocomposite latex via miniemulsion polymerization and its antibacterial property

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Styrene polymer/ZnO nanocomposite latex was fabricated using miniemulsion polymerization in the presence of coupling agent 3-aminopropyltriethoxysilane (APTES) and hexadecane as hydrophobe. The size distribution and morphology of the composite latex particles were characterized by dynamic light scattering and transmission electron micrograph. X-ray photoelectron spectroscopy and Fourier transform infrared spectrophotometer results demonstrate that ZnO nanoparticles were encapsulated into polymer phases. The coupling treatment of ZnO with APTES can improve the dynamic contact angles of ZnO nanoparticle with water to enhance its hydrophobicity. When 0.6% APTES to ZnO (wt/wt) is used to modify ZnO, the encapsulation efficiency of ZnO reaches to 95%. It shows that the high encapsulation efficiency improves dispersion of ZnO nanoparticles in polymer film by scanning electron microscope. The stable structural hybrid latex can adequately exert unique function of nanoparticles in coatings. It indicates that the coatings added the composite latex exhibits perfect antibacterial activity, which has a tremendous potentiality in the field of coating materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ragostaa G, Abbatea M, Mustoa P, Scarinzia G, Mascia L (2005) Polymer 46:10506

    Article  Google Scholar 

  2. Lee MS, Lee GD, Hong SS (2003) J Ind Eng Chem 9(5):556

    CAS  Google Scholar 

  3. Li J, Hong X, Liu Y, Li D, Wang Y (2005) Adv Mater 17:163

    Article  CAS  Google Scholar 

  4. Tang EJ, Liu H, Sun LM, Zheng EL (2007) Eur Polym J 43:4210

    Article  CAS  Google Scholar 

  5. Zheng K, Chen L, Li Y, Cui P (2004) Polym Eng Sci 44:1077

    Article  CAS  Google Scholar 

  6. Caseri W (2000) Macromol Rapid Comm 21:705–722

    Article  CAS  Google Scholar 

  7. Fleischhaker F, Zentel R (2005) Chem Mater 17:1346

    Article  CAS  Google Scholar 

  8. Hu GJ, Zhao CG, Zhang SM, Yang MS, Wang ZG (2006) Polymer 47:480

    Article  CAS  Google Scholar 

  9. Boguslavsky Y, Margel S (2008) J Colloid Interfce Sci 317:101

    Article  CAS  Google Scholar 

  10. Tang EJ, Cheng GX, Pang XS et al (2006) Colloid Polym Sci 284:422

    Article  CAS  Google Scholar 

  11. Goyanes SN, Marconi JD, Konig PG, Matteo CL, Rubiolo GH, Marzocca AJ (2001) Polymer 42:5267

    Article  CAS  Google Scholar 

  12. Kawaguchi H (2001) Prog Polym Sci 25:1171

    Article  Google Scholar 

  13. Chan YN, Craig SW, Schrock RR, Cohen RE (1992) Chem Mater 4:885

    Article  CAS  Google Scholar 

  14. Dong GY, Jeong HA (2004) Polymer 45:4761

    Article  Google Scholar 

  15. Xiong MN, Wu LM, Zhou SX, You B (2002) Polym Int 51:693

    Article  CAS  Google Scholar 

  16. Xie XL, Liu QX, Li RY, Zhou XP, Zhou XP, Zhang QX, Yu ZZ, Mai YW (2004) Polymer 45:6665

    Article  CAS  Google Scholar 

  17. Bourgeat LE, Lang J (1999) J Colloid Interface Sci 210:281

    Article  Google Scholar 

  18. Zhang K, Chen HT, Chen X, Chen ZM, Cui ZC, Yang B (2003) Macromol Mater Eng 288:380

    Article  CAS  Google Scholar 

  19. Luna-Xavier JL, Bourgeat-Lami E, Guyot A (2001) Colloid Polym Sci 279:947

    Article  CAS  Google Scholar 

  20. Reculusa S, Mingotaud C, Bourgeat-Lami E, Duguet E, Ravaine S (2004) Nano Lett 4:1677

    Article  CAS  Google Scholar 

  21. Zhang SW, Zhou SX, Weng YM, Wu LM (2005) Langmuir 21:2124

    Article  CAS  Google Scholar 

  22. Luo Y, Zhou X (2004) J Polym Sci Part A Polym Chem 42:2145

    Article  CAS  Google Scholar 

  23. Sajjadi S, Jahanzad F (2004) Eur Polym J 39:785

    Article  Google Scholar 

  24. Csetneki I, Faix MK, Szilagyi A, Kovacs AL, Nemeth Z, Zrinyi M (2004) J Polym Sci Pol Chem 42:4802

    Article  CAS  Google Scholar 

  25. Bouanani F, Bendedouch D, Maitre C, Teixeira J, Hemery P (2005) Polym Bull 55:429–436

    Article  CAS  Google Scholar 

  26. Asua JM (2002) Prog Polym Sci 27:1283–1346

    Article  CAS  Google Scholar 

  27. Schork FJ, Back A (2004) J Appl Polym Sci 94:2555

    Article  CAS  Google Scholar 

  28. MacLachlan MJ, Manners I, Ozin GA (2000) Adv Mater 12:675

    Article  CAS  Google Scholar 

  29. Hung C, Whang W (2005) Chem Mater 15:267

    Article  CAS  Google Scholar 

  30. Xiong HD, Liu D, Xia Y, Chen J (2005) Chem Mater 17:3062

    Article  CAS  Google Scholar 

  31. Abdullah M, Lenggoro IW, Okuyama K (2003) J Phys Chem B 107:1957

    Article  CAS  Google Scholar 

  32. Tang EJ, Cheng GX, Ma XL (2005) Powder Technol 161:209–214

    Article  Google Scholar 

  33. Basch A, Strnad S, Ribitsch V (2005) Colloid Surfaces A Physicochem Eng Aspects 333:163

    Article  Google Scholar 

  34. Washburn EW (1921) Phys Rev A 17:273

    Article  Google Scholar 

  35. Grundke K, Boerner M, Jakobasch HJ (1991) Colloid Surface A 58:47

    Article  CAS  Google Scholar 

  36. Fang M, Chen JH, Xu XL, Yang PH, Hildebrand HF (2006) Int J Antimicrob Agents 27:513

    Article  CAS  Google Scholar 

  37. Luiz J, Xavier L, Guyot A, Bourgeat-Lami E (2004) Polym Int 53:609

    Google Scholar 

  38. Basch A, Strnad S, Ribitsch V (2009) Colloid Surface A 333:163–169

    Article  CAS  Google Scholar 

  39. Roy A, Polarz S, Rabe S, Rellinghaus B, Zähres H, Kruis FE, Driess M (2004) Chem Eur J 10:1565

    Article  CAS  Google Scholar 

  40. Monticone S, Tufeu R, Kanaev AV (1998) J Phys Chem B 102:2854

    Article  CAS  Google Scholar 

  41. Zhang M, Gao G, Li C, Liu F (2004) Langmuir 20:1420

    Article  CAS  Google Scholar 

  42. Zhang LL, Ding YL, Povey M, York D (2008) Prog Nat Sci 18:939

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the financial supports by the Natural Science Foundation of Hebei Province, China (E2007000629), the Science Foundation of Hebei University of Science and Technology, and the Outstanding Young Foundation of Hebei University of Science and Technology, China (2006JC-09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erjun Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, E., Dong, S. Preparation of styrene polymer/ZnO nanocomposite latex via miniemulsion polymerization and its antibacterial property. Colloid Polym Sci 287, 1025–1032 (2009). https://doi.org/10.1007/s00396-009-2057-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-009-2057-5

Keywords

Navigation