Skip to main content
Log in

Electrical conductivity of sodium polystyrenesulfonate in acetonitrile–water-mixed solvent media: experiment and data analysis using the Manning counterion condensation model and the scaling theory approach

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Precise measurements on the electrical conductivity of sodium polystyrenesulfonate in acetonitrile–water-mixed solvent media containing 20 and 40 vol.% of acetonitrile at 308.15, 313.15, and 318.15 K are reported. The mobility of the polyelectrolyte solute was found to be influenced by the polyelectrolyte concentration, the relative permittivity of the medium, and the temperature. The Manning counterion condensation theory for salt-free polyelectrolyte solution failed to describe the experimental results. The data have, therefore, been analyzed on the basis of a new model for semidilute polyelectrolyte conductivity which takes into account the scaling arguments to obtain the fractions of uncondensed counterions which were found to depend on the polyelectrolyte concentration. The effects of the temperature and the relative permittivity of the medium on the equivalent conductivity as well as on the fraction of uncondensed counterions have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Oosawa F (1993) Polyelectrolytes. Marcel Dekker, New York

    Google Scholar 

  2. Dautzenberg H, Jager W, Koetz J, Seidel C, Stscherbina D (1994) Polyelectrolytes: formation, characterization, and application. Hanser, Munich

    Google Scholar 

  3. Schmitz KS (Ed.) (1994) Macro-ion characterization. From dilute solutions to complex fluids. ACS Symposium Series 548, American Chemical Society, Washington DC

  4. Manning GS (1975) J Phys Chem 79:262

    Article  CAS  Google Scholar 

  5. Manning GS J (1969) Chem Phys 51:924

    Google Scholar 

  6. Manning GS (1969) J Chem Phys 51:934

    Article  Google Scholar 

  7. Manning GS (1972) Ann Rev Phys Chem 23:117

    Article  CAS  Google Scholar 

  8. Manning GS (1891) J Phys Chem 85:1506

    Article  Google Scholar 

  9. Manning GS (1970) Biopolymers 9:1543

    Article  CAS  Google Scholar 

  10. Wandrey C, Hunkeler D (2002) In: Tripathy SK, Kumar J, Nalwa HS (eds) Handbook of polyelectrolytes and their applications. vol 2. American Scientific, Stevenson Ranch, p 147

    Google Scholar 

  11. Bordi F, Cammetti C, Colby RH (2004) J Phys Condens Matter 16:R1426

    Article  CAS  Google Scholar 

  12. Kwak JCT, Hayes RC (1975) J Phys Chem 79:265

    Article  CAS  Google Scholar 

  13. Szymczak J, Holyk P, Ander P (1975) J Phys Chem 79:269

    Article  CAS  Google Scholar 

  14. Kwak JCT, Johnston AJ (1975) Can J Chem 53:792

    Article  CAS  Google Scholar 

  15. Kwak JCT, Murphy GF, Spiro EJ (1978) Biophys Chem 7:379

    Article  CAS  Google Scholar 

  16. Beyer P, Nordmeier E (1995) Eur Polym J 31:1031

    Article  CAS  Google Scholar 

  17. Abramovic H, Klofutar C (1997) Eur Polym J 33:1295

    Article  CAS  Google Scholar 

  18. Wandrey C (1999) Langmuir 15:4069

    Article  CAS  Google Scholar 

  19. Bordi F, Cametti C, Motta M, Paradossi G (1999) J Phys Chem B 103:5092

    Article  CAS  Google Scholar 

  20. Rios HE (2001) Polym Int 50:885

    Article  CAS  Google Scholar 

  21. Colby RH, Boris DC, Krause WE, Tan JS (1997) J Polym Sci (Part B) 35:2951

    Article  CAS  Google Scholar 

  22. Dobrynin AV, Colby RH, Rubinstein M (1995) Macromolecules 28:1859

    Article  CAS  Google Scholar 

  23. Bordi F, Colby RH, Cametti C, Lorenzo LD, Gili T (2002) J Phys Chem B 106:6887

    Article  CAS  Google Scholar 

  24. Bratko D, Kelbl A (1986) Macromolecules 19:2083

    Article  CAS  Google Scholar 

  25. Davydova OV, Zelikin AN, Kargov SI, Izumrodov VA (2001) Macromol Chem Phys 202:1361

    Article  CAS  Google Scholar 

  26. Barraza RG, Rios HE (1995) Polym Int 38:387

    Article  CAS  Google Scholar 

  27. Barraza RG, Olea A, Fuentes I, Martinez F (2003) J Chil Chem Soc 48:67

    Article  CAS  Google Scholar 

  28. Dragan S, Ghimici L, Wandrey C (2004) Macromol Symp 211:107

    Article  CAS  Google Scholar 

  29. Nandi P, Das B (2005) J Phys Chem B 109:3238

    Article  CAS  Google Scholar 

  30. Bhattarai A, Nandi P, Das B (2006) J Pol Res 13:475

    Article  CAS  Google Scholar 

  31. De R, Das B (2007) Eur Pol J 43:3400

    Article  CAS  Google Scholar 

  32. Ghosh D, Das B (2004) J Chem Eng Data 49:1771

    Article  CAS  Google Scholar 

  33. Das B, Hazra DK (1995) J Phys Chem 99:269

    Article  CAS  Google Scholar 

  34. Kozak D, Kristan J, Dolar D (1971) Z Phys Chem (NF) 76:85

    CAS  Google Scholar 

  35. Rios HE, Barraza RG, Gamboa IC (1993) Polym Int 31:213

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bijan Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, D., Bhattarai, A. & Das, B. Electrical conductivity of sodium polystyrenesulfonate in acetonitrile–water-mixed solvent media: experiment and data analysis using the Manning counterion condensation model and the scaling theory approach. Colloid Polym Sci 287, 1005–1011 (2009). https://doi.org/10.1007/s00396-009-2055-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-009-2055-7

Keywords

Navigation