Skip to main content
Log in

Retinol fluorescence: a simple method to differentiate different bilayer morphologies

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The fluorescence spectra of retinol obtained in bilayer structures of two different systems with dodecyl tetraethylenglycol ether are shown. A correlation between the fluorescence intensity of retinol and the different topologies of bilayers has been found. We have tested this correlation with the C12E4/benzyl alcohol/water system, and we have also applied this idea to the study of the lamellar phases of the C12E4/PEG/water system. The highest fluorescence intensity of retinol corresponds to unilamellar vesicles, while the lowest is observed for multilamellar vesicles. The kinetic study of the degradation of vitamin A in these media is also related to the different microstructures of the bilayers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Evans F, Wennerström H (1999) The colloidal domain. Where physics, chemistry, biology, and technology meet. Wiley-VCH, New York

    Google Scholar 

  2. Makai M, Csányi E, Németh Z et al (2003) Structure and drug release of lamellar liquid crystals containing glycerol. Int J Pharm 256:95–107

    Article  CAS  Google Scholar 

  3. Nii T, Ishii F (2005) Encapsulation efficiency of water-soluble and insoluble drugs in liposomes prepared by the microencapsulation vesicle method. Int J Pharm 298:198–205

    Article  CAS  Google Scholar 

  4. Garcia-Fuentes M, Alonso MJ, Torres D (2005) Design and characterization of a new drug nanocarrier made from solid–liquid lipd mixtures. J Colloid Interface Sci 285:590–598

    Article  CAS  Google Scholar 

  5. Hoffmann H (1994) Viscoelastic surfactan solutions. In: Herb CA, Prud’homme RK (eds) Structure and flow in surfactant solutions. ACS Symposium Series 578, pp 2–31

  6. Caboi F, Monduzzi M (1998) On microstructural transitions of lamellar phase forming surfactants. Prog Colloid & Polym Sci 108:153–160

    Article  CAS  Google Scholar 

  7. Gradzielski M (2003) Vesicles and vesicle gels—structure and dynamics of formation. J Phys, Condens Matter 15:R655–R697

    Article  CAS  Google Scholar 

  8. Schomäcker R, Strey R (1994) Effect of ionic surfactants on nonionic bilayers: bending elasticity of weakly charged membranes. J Phys Chem 98:3908–3912

    Article  Google Scholar 

  9. Bergenholtz J, Wagner NJ (1996) Formation of AOT/brine multilamellar vesicles. Langmuir 12:3122–3126

    Article  CAS  Google Scholar 

  10. Auguste F, Douliez JP, Bellocq AM et al (1997) H-NMR and freeze fracture electron microscopy. Langmuir 13:666–672

    Article  CAS  Google Scholar 

  11. Regev O, Khan A (1994) Vesicle–lamellar transition events in DDAB–water solution. Prog Colloid & Polym Sci 97:298–301

    Article  CAS  Google Scholar 

  12. Gomati R, Appell J, Bassereau P et al (1987) Influence of the nature of the counterion and of hexanol on the phase behavior of the dilute ternary systems: cetylpyridinium bromide or chloride–hexanol–brine. J Phys Chem 91:6203–6210

    Article  CAS  Google Scholar 

  13. Strey R, Schomäcker R, Roux D et al (1990) Dilute lamellar and L3 phases in the binary water–C12E5 system. J Chem Soc, Faraday Trans 86(12):2253

    Article  CAS  Google Scholar 

  14. Platz G, Thunig C, Hoffmann H (1992) Phase behavior and light scattering of the system dodecyldimethylaminoxide, n-hexanol and water in the very dilute region. Ber Bunsenges Phys Chem 96:667–677

    CAS  Google Scholar 

  15. Jönsson B, Wennerström H (1987) Phase equilibria in a three-component water–soap–alcohol system. A thermodynamic model. J Phys Chem 91:338–352

    Article  Google Scholar 

  16. Caria A, Regev O, Khan A (1998) Surfactant–polymer interactions: phase diagram and fusion of vesicle in the didodecyldimethylammonium bromide–poly(ethylene oxide)–water system. J Colloid Interface Sci 200:19–30

    Article  CAS  Google Scholar 

  17. Takeoka S, Mori K, Ohkawa H et al (2000) Synthesis and assembly of poly(ethylene glycol)-lipids with mono-, di-, and tetracyl chains and a poly(ethylene glycol) chain of various molecular weights. J Am Chem Soc 122:7927–7935

    Article  CAS  Google Scholar 

  18. Montalvo G, Rodenas E, Valiente M (1998) Phase and rheological behavior of the dodecyl tetraethylene glycol/benzyl alcohol/water system at low surfactant and alcohol concentrations. J Colloid Interface Sci 202:232–237

    Article  CAS  Google Scholar 

  19. Montalvo G, Valiente M, Mortensen K et al (2001) Structural changes induced in the surfactant system C12E4/benzyl alcohol/water by the admixture of the cationic surfactant cetylpyridinium chloride. J Colloid Interface Sci 238:215–258

    Article  Google Scholar 

  20. Montalvo G, Rodenas E, Valiente M (2000) Effects of cetylpyridinium chloride on phase and rheological behavior of the diluted C12E4/benzyl alcohol/water system. J Colloid Interface Sci 227:171–175

    Article  CAS  Google Scholar 

  21. Radlihska EZ, Zemb TN, Dalbiez JP et al (1993) Lamellar to vesicle transitions of highly charged bilayers. Langmuir 9:2844–2850

    Article  Google Scholar 

  22. Clegg SM, Williams PA, Warren P et al (1994) Phase behavior of polymers with concentrated dispersions of surfactants. Langmuir 10:3390–3394

    Article  CAS  Google Scholar 

  23. Piculell L, Bergfeldt K, Gerdes S (1996) Segregation in aqueous mixtures of nonionic polymers and surfactant micelles. Effects of micelle size and surfactant headgroup–polymer interactions. J Phys Chem 100:3675–3679

    Article  CAS  Google Scholar 

  24. Bernheim-Groswasser A, Wachtel E, Talmon Y (2000) Micellar growth, network formation, and criticality in aqueous solutions of the nonionic surfactant C12E5. Langmuir 16:4131–4140

    Article  CAS  Google Scholar 

  25. Arnhold T, Nau H, Ruehl R (2000) Vitamin A. In: Song WO, Beecher GR, Eitenmiler RR (eds) Modern analytical methodologies in fat- and water-soluble vitamins, chapter 1. Wiley, New York

    Google Scholar 

  26. Farn RJ (ed) (2006) Chemistry and technology of surfactants. Blackwell, Ames (Iowa)

  27. Myers D (2006) Surfactant science and technology. Wiley, Hoboken

    Google Scholar 

  28. Muñoz-Botella S, Martín MA, del Castillo B et al (2002) Differentiating geometrical isomers of retinoids and controlling their photo-isomerization by complexation with cyclodextrins. Anal Chim Acta 468:161–170

    Article  Google Scholar 

  29. Sapino S, Carlotti ME, Cavalli R et al (2007) Effect of Akyl-γ-cyclodextrins on the stability of retinol. J Incl Phenom Macrocycl Chem 57:451–455

    Article  CAS  Google Scholar 

  30. Singh AK, Das J (1998) Liposome encapsulated vitamin A compounds exhibit greater stability and diminished toxicity. Biophys Chem 73:155–162

    Article  CAS  Google Scholar 

  31. Arsic I, Vidovic A (1999) Influence of liposomes on the stability of vitamin A incorporated in polyacrylate hydrogel. Int J Cosm Sci 21:219–225

    Article  CAS  Google Scholar 

  32. Lee MH, Oh SG, Moon SK et al (2001) Preparation of silica particles encapsulating retinol using O/W/O multiple emulsions. J Colloid Interface Sci 240:83–89

    Article  CAS  Google Scholar 

  33. Hwang YJ, Oh C, Oh SG (2005) Controlled release of retinol from silica particles prepared in O/W/O emulsion: the effects of surfactants and polymers. J Control Release 106:339–349

    Article  CAS  Google Scholar 

  34. Jee JP, Lim SJ, Park JS et al (2006) Stabilization of all-trans retinol by loading lipophilic antioxidants in solid lipid nanoparticles. Eur J Pharm Biopharm 63:134–139

    Article  CAS  Google Scholar 

  35. Han SH, Lee JS, Kim Y et al (2007) Quantitative characterization of degradation behaviors of antioxidants stabilized in lipid particles. Talanta 71:2129–2133

    Article  CAS  Google Scholar 

  36. Lin JM, Yamada M (2003) Microheterogeneous systems of micelles and microemulsions as reaction media in chemiluminescent analysis. Trends Anal Chem 22:99–107

    Article  CAS  Google Scholar 

  37. Ramos-Lledó P, Vera S, San Andrés MP (2001) Determination of vitamins A and E in milk samples by fluorescence in micellar media. Fresenius J Anal Chem 369:91–95

    Article  Google Scholar 

  38. León-Ruiz V, Vera S, San Andrés MP (2005) Validation of a screening method for the simultaneous identification of fat-soluble and water-soluble vitamins (A, E, B1, B2 and B6) in an aqueous micellar medium of hexadecyltrimethylammonium chloride. Anal Bioanal Chem 381:568–1575

    Article  Google Scholar 

  39. Torre M, Sánchez-Hernández M, Vera S et al (2008) Improvement in retinol analysis by fluorescence and Solid Phase Extraction (SPE) in micellar medium. J Fluoresc 18:487–449

    Article  CAS  Google Scholar 

  40. Yoshida K, Sekine T, Matsuzaki F et al (1999) Stability of Vitamin A in Oil-in-Water-in-Oil-Type Multiple Emulsions. J Am Oil Chem Soc 76(2):1–6

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Spanish Ministry of Education and Science for its financial support for the research project CTQ2007-65421/BQU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Valiente.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torre, M., San Andrés, M.P., Vera, S. et al. Retinol fluorescence: a simple method to differentiate different bilayer morphologies. Colloid Polym Sci 287, 951–959 (2009). https://doi.org/10.1007/s00396-009-2051-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-009-2051-y

Keywords

Navigation