Skip to main content
Log in

Drying dissipative structures of aqueous solution of poly(ethylene glycol) on a cover glass, a watch glass, and a glass dish

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Drying dissipative structures of aqueous solution of poly(ethylene glycol) (PEG) of molecular weights ranging from 200 to 3,500,000 were studied on a cover glass, a watch glass, and a glass dish on macroscopic and microscopic scales. Any convectional and sedimentation patterns did not appear during the course of drying the PEG solutions. Several important findings on the drying patterns are reported. Firstly, the crystalline structures of the dried film changed from hedrites to spherulites as the molecular weight and/or concentration of PEG increased. Secondly, lamellae were formed along the ring patterns especially at high concentrations and high molecular weights. The coupled crystalline patterns of the spherulites and the lamellae were observed in a watch glass along the ring structures, supporting the important role of the convection by the gravity during the course of dryness. The coupled patterns were difficult to be formed on a cover glass and a glass dish, except at the outside edge of the dried film. Thirdly, the size of the broad ring at the outside edge of the dried film especially on a cover glass and a watch glass increased sharply as the molecular weight increased and also as the polymer concentration increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Okubo T (2006) In: Stoylov SP, Stoimenova MV (eds) Molecular and colloidal electro-optics. Taylor & Francis, New York, p 573

    Google Scholar 

  2. Okubo T (2008) In: Nagarajan R, Hatton TA (eds) Nanoparticles: syntheses, stabilization, passivation and functionalization. ACS Book, Washington, DC, p 256

    Google Scholar 

  3. Gribbin G (1999) Almost everyone’s guide to science. The universe, life and everything. Yale University Press, New Haven

    Google Scholar 

  4. Ball P (1999) The self-made tapestry. Pattern formation in nature. Oxford University Press, Oxford

    Google Scholar 

  5. Okubo T (2001) Beautiful world of colloids and interfaces (Japanese). Matsuo, Gifu

    Google Scholar 

  6. Terada T, Yamamoto R, Watanabe T (1934) Sci Paper Inst Phys Chem Res Jpn 27:173 Proc Imper Acad Tokyo 10:10

    Google Scholar 

  7. Terada T, Yamamoto R, Watanabe T (1934) Sci Paper Inst Phys Chem Res Jpn 27:75

    Google Scholar 

  8. Terada T, Yamamoto R (1935) Proc Imper Acad Tokyo 11:214

    CAS  Google Scholar 

  9. Nakaya U (1947) Memoirs of Torahiko Terada (Japanese). Kobunsya, Tokyo

    Google Scholar 

  10. Okubo T, Kimura H, Kimura T, Hayakawa F, Shibata T, Kimura K (2005) Colloid Polym Sci 283:1

    Article  CAS  Google Scholar 

  11. Okubo T (2006) Colloid Polym Sci 285:225

    Article  CAS  Google Scholar 

  12. Okubo T (2009) Colloid Polym Sci 287:167

    Article  CAS  Google Scholar 

  13. Okubo T, Okamoto J, Tsuchida A (2009) Colloid Polym Sci 287:351

    Article  CAS  Google Scholar 

  14. Okubo T, Okamoto J, Tsuchida A (2009) Colloid Polym Sci. doi:10.1007/s00396-009-2021-4

  15. Okubo T, Okamoto J, Tsuchida A (2008) Colloid Polym Sci 286:1123

    Article  CAS  Google Scholar 

  16. Okubo T (2008) Colloid Polym Sci 286:1307

    Article  CAS  Google Scholar 

  17. Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (1997) Nature 389:827

    Article  CAS  Google Scholar 

  18. Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (2000) Phys Rev E 62:756

    Article  CAS  Google Scholar 

  19. Okubo T (2006) Colloid Polym Sci 284:1191

    Article  CAS  Google Scholar 

  20. Okubo T (2006) Colloid Polym Sci 284:1395

    Article  CAS  Google Scholar 

  21. Okubo T, Okamoto J, Tsuchida A (2007) Colloid Polym Sci 285:967

    Article  CAS  Google Scholar 

  22. Okubo T (2007) Colloid Polym Sci 285:1495

    Article  CAS  Google Scholar 

  23. Okubo T, Okamoto J, Tsuchida A (2008) Colloid Polym Sci 286:385

    Article  CAS  Google Scholar 

  24. Okubo T, Okamoto J, Tsuchida A (2008) Colloid Polym Sci 286:941

    Article  CAS  Google Scholar 

  25. Yamaguchi T, Kimura K, Tsuchida A, Okubo T, Matsumoto M (2005) Colloid Polym Sci 283:1123

    Article  CAS  Google Scholar 

  26. Okubo T (2006) Colloid Polym Sci 285:331

    Article  CAS  Google Scholar 

  27. Vanderhoff JW (1973) J Polym Sci Symp 41:155

    Article  Google Scholar 

  28. Nicolis G, Prigogine I (1977) Self-organization in non-equilibrium systems. Wiley, New York

    Google Scholar 

  29. Ohara PC, Heath JR, Gelbart WM (1997) Angew Chem 109:1120

    Article  Google Scholar 

  30. Maenosono S, Dushkin CD, Saita S, Yamaguchi Y (1999) Langmuir 15:957

    Article  CAS  Google Scholar 

  31. Nikoobakht B, Wang ZL, El-Sayed MA (2000) J Phys Chem 104:8635

    CAS  Google Scholar 

  32. Ung T, Litz-Marzan LM, Mulvaney P (2001) J Phys Chem B 105:3441

    Article  CAS  Google Scholar 

  33. Okubo T, Onoshima D, Tsuchida A (2007) Colloid Polym Sci 285:999

    Article  CAS  Google Scholar 

  34. Okubo T, Kanayama S, Ogawa H, Hibino M, Kimura K (2004) Colloid Polym Sci 282:230

    Article  CAS  Google Scholar 

  35. Shimomura M, Sawadaishi T (2001) Curr Opin Coll Interf Sci 6:11

    Article  CAS  Google Scholar 

  36. Okubo T, Yamada T, Kimura K, Tsuchida A (2006) Colloid Polym Sci 284:396

    Article  CAS  Google Scholar 

  37. Kimura K, Kanayama S, Tsuchida A, Okubo T (2005) Colloid Polym Sci 283:898

    Article  CAS  Google Scholar 

  38. Okubo T, Shinoda C, Kimura K, Tsuchida A (2005) Langmuir 21:9889

    Article  CAS  Google Scholar 

  39. Okubo T, Kanayama S, Kimura K (2004) Colloid Polym Sci 282:486

    Article  CAS  Google Scholar 

  40. Okubo T, Emi I, Tsuchida A, Kokufuta E (2006) Colloid Polym Sci 285:339

    Article  CAS  Google Scholar 

  41. Okubo T, Yokota N, Tsuchida A (2007) Colloid Polym Sci 285:1257

    Article  CAS  Google Scholar 

  42. Cachile M, Benichou O, Cazabat AM (2002) Langmuir 18:7985

    Article  CAS  Google Scholar 

  43. Cachile M, Benichou O, Poulard C, Cazabat AM (2002) Langmuir 18:8070

    Article  CAS  Google Scholar 

  44. Palmer HJ (1976) J Fluid Mech 75:487

    Article  Google Scholar 

  45. Anderson DM, Davis SH (1995) Phys Fluids 7:248

    Article  CAS  Google Scholar 

  46. Pouth AF, Russel WB (1998) AIChEJ 44:2088

    Article  Google Scholar 

  47. Burelbach JP, Bankoff SG (1998) J Fluid Mech 195:463

    Article  Google Scholar 

  48. Matar OK, Craster RV (2001) Phys Fluids 13:1869

    Article  CAS  Google Scholar 

  49. Hu H, Larson RG (2002) J Phys Chem B 106:1334

    Article  CAS  Google Scholar 

  50. Rabani E, Reichman DR, Geissler PL, Brus LE (2003) Nature 426:271

    Article  CAS  Google Scholar 

  51. Fischer BJ (2002) Langmuir 18:60

    Article  CAS  Google Scholar 

  52. Allen RC, Manderkern L (1982) J Polym Sci Polym Phys Ed 20:1465

    Article  CAS  Google Scholar 

  53. Hay JN, Sabir M, Steven RLT (1969) Polymer 10:187

    Article  CAS  Google Scholar 

  54. Godovsky YK, Slonimsky GL, Garbar NM (1972) J Polym Sci 38:1

    Google Scholar 

  55. Maclaine JQG, Booth C (1975) Polymer 16:191

    Article  CAS  Google Scholar 

  56. Jadrague D, Fatou JG (1977) Anal Quimica 73:639

    Google Scholar 

  57. Mihailov M, Nedkov E, Goshev I (1978) J Macromol Sci Phys B 15:313

    Article  Google Scholar 

  58. Yang M, Salovey R, Allen SD (1990) J Polym Sci B Polym Phys 28:245

    Article  CAS  Google Scholar 

  59. Mandelkern L (2004) Crystallization of Polymers, 2nd ed., Vol. 2. Cambridge

  60. Da Costa VM, Fiske TG, Coleman LB (1994) J Chem Phys 101:2746

    Article  Google Scholar 

  61. Huang T, Rey AD, Kamal MR (1994) Polymer 35:5434

    Article  CAS  Google Scholar 

  62. Schultz JM, Miles MJ (1998) J Polym Sci B Polym Phys 36:2311

    Article  CAS  Google Scholar 

  63. Gu F, Bu H, Zhang Z (2000) Polymer 41:7605

    Article  CAS  Google Scholar 

  64. Park C, Robertson RE (2001) Polymer 42:2597

    Article  CAS  Google Scholar 

  65. Sasaki T, Miyazaki A, Sugiura S, Okada K (2002) Polym J 34:794

    Article  CAS  Google Scholar 

  66. Kawashima K, Kawano R, Miyagi T, Umemoto S, Okui N (2003) J Macromol Sci B Phys 42:889

    Article  CAS  Google Scholar 

  67. Jiang SAL, Jiang B (2004) J Polym Sci B Polym Phys 42:656

    Article  CAS  Google Scholar 

  68. Hobbs JK, Vasilev C, Humphris ADL (2005) Polymer 46:10226

    Article  CAS  Google Scholar 

  69. Yang H, Yin W, Zhang X, Cai Z, Wang Z, Cheng R (2005) J Appl Polym Sci 96:2454

    Article  CAS  Google Scholar 

  70. Machado JC, Silva GG, De Oliveira FC, Lavall RL, Rieumont J, Licinio P, Windmoller D (2007) J Polym Sci B Polym Phys 45:2400

    Article  CAS  Google Scholar 

  71. Okubo T (2008) Colloid Polym Sci 286:1411

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Professor Emeritus Keisuke Kaji of Kyoto University is highly acknowledged for his valuable comments on this work. Financial supports from the Ministry of Education, Culture, Sports, Science, and Technology, Japan and Japan Society for the Promotion of Science are greatly acknowledged for Grants-in-Aid for Exploratory Research (17655046 to T.O.) and Scientific Research (B; 18350057 to T.O. and 19350110 to A.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuneo Okubo.

Electronic supplementary materials

Fig. 2a

Thickness profiles of the dried film of PEG solution on a cover glass as a function of the distance from the center at 24 °C. 0.1 monoM, a PEG20K, b PEG500K, c PEG2000K, d PEG3500K (DOC 96.0 kb)

Fig. 4a

Two typical microscopic drying patterns of PEG solution on a cover glass at 24 °C. Line A PEG0.2K, B PEG1K, C PEG2K, D PEG4K, E PEG8K, 5 h 25 m after setting, 0.1 monoM, polymer concentrations are 0.003 monoM (a), 0.01 monoM (b), 0.03 monoM (c), and 0.1 monoM (d), respectively, 0.1 ml; full scale is 100 μm (DOC 206 kb)

Fig. 4b

Two typical microscopic drying patterns of PEG solution on a cover glass at 24 °C. Line F PEG20K, G PEG500K, H PEG2000K, I PEG3500K, 5 h 25 m after setting, polymer concentrations are 0.003 monoM (a), 0.01 monoM (b), 0.03 monoM (c), and 0.1 monoM (d), respectively, 0.1 ml; full scale is 100 μm (DOC 195 kb)

Fig. 7a

Microscopic drying patterns of PEG solution in a watch glass at 24 °C. ad PEG0.2K, from left edge to right, eh PEG1K, il PEG2K, 45 h 25 m after setting, 0.01 monoM, 4 ml; full scale is 100 μm (DOC 232 kb)

Fig. 7b

Microscopic drying patterns of PEG solution in a watch glass at 24 °C. ad PEG4K, from center to right, eh PEG8K, from left edge to center, il PEG20K, from center to right, 45 h 25 m after setting, 0.01 monoM, 4 ml; full scale is 100 μm (DOC 244 kb)

Fig. 9a

Microscopic drying patterns of PEG solution in a glass dish at 24 °C. ad PEG4K, from center to right edge, eh PEG8K, il PEG20K, 93 h 30 m after setting, 0.01 monoM, 5 ml; full scale is 100 μm (DOC 185 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okubo, T., Okamoto, J., Takahashi, S. et al. Drying dissipative structures of aqueous solution of poly(ethylene glycol) on a cover glass, a watch glass, and a glass dish. Colloid Polym Sci 287, 933–942 (2009). https://doi.org/10.1007/s00396-009-2049-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-009-2049-5

Keywords

Navigation