Skip to main content
Log in

Polymeric microcapsules with internal cavities for ultrasonic imaging: efficient fabrication and physical characterization

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Polymeric microcapsules are of great potential in ultrasonic imaging due to their characteristic hollow structure. Water-in-oil-in-water (W1/O/W2) double emulsion-solvent evaporation technique is a versatile strategy applicable to most hydrophobic polymers for fabricating microcapsules; however, the adjustment of the size and inner structure of resultant microcapsules have not been systematically studied until now. Here, we evaluate in detail the parameters in double emulsification and find that the W1/O volume ratio is a pivotal parameter which controls the hollow structure of microcapsules. In addition, an appropriate concentration of emulsifier in W2 is essential to guarantee the hollow structure as well. For quantitatively characterizing the hollow structure of microcapsules, we propose the concept of Hollow Ratio (HR) and Hollow Degree (HD) to evaluate the percent of hollow microcapsules in products and the hollow characteristic of the microcapsules. Our study demonstrates that the HR of microcapsules can vary between 25% and 98% by only adjusting the W1/O volume ratio. The size of microcapsule has a close relationship to its HD. Moreover, the microcapsules with both single cavity and multicavities have been fabricated by altering the energy of the second emulsification. Further, acoustic studies reveal that the microcapsules with different HD display obviously different sound attenuation spectrum and resonance frequency, which demonstrates that the adjustment of hollow structure should be an effective approach to control the acoustical properties of microcapsules for ultrasonic imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Scheme 3
Fig. 5
Fig. 6
Scheme 4
Fig. 7
Scheme 5
Fig. 8

Similar content being viewed by others

References

  1. Klibanov AL (1999) Adv Drug Delivery Rev 37:139

    Article  CAS  Google Scholar 

  2. Unger EC, Hersh E, Vannan M, McCreery T (2001) Echocardiogr 18:355

    Article  CAS  Google Scholar 

  3. Mayer RC, Bekeredjian R (2008) Adv Drug Delivery Rev 60:1177

    Article  CAS  Google Scholar 

  4. Van Liew HD, Burkard ME (1995) J Appl Physiol 79:1379

    Google Scholar 

  5. Van Liew HD, Raychaudhuri S (1997) J Appl Physiol 82:2045

    Google Scholar 

  6. Sukhorukov GB, Rogach, AL, Zebli B, Liedl T, Skirtach AG, Kohler, K, Antipov AA, Gaponik N, Susha AS, Winterhalter M, Parak WJ (2005) Small 1:194

    Article  CAS  Google Scholar 

  7. Sboros V (2008) Adv Drug Delivery Rev 60:1117

    Article  CAS  Google Scholar 

  8. Borden AM, Zhang H, Gillies JR, Dayton AP, Ferrara WK (2008) Biomaterials 29:597

    CAS  Google Scholar 

  9. Blomley MJK, Cooke JC, Unger EC, Monaghan MJ, Cosgrove DO (2001) Brit Med J 322:1222

    Article  CAS  Google Scholar 

  10. Pisani E, Tsapis N, Paris J, Nicolas V, Cattel L, Fattal E (2006) Langmuir 22:4397

    Article  CAS  Google Scholar 

  11. Ophir J, Parker KJ (1989) Ultrasound Med Biol 15:319

    Article  CAS  Google Scholar 

  12. Andrew PM, Navin CN (2004) Ultrasound Med Biol 30:425

    Article  Google Scholar 

  13. Cui WJ, Bei JZ, Wang SG, Zhi G, Zhao YY, Zhou XS, Zhang HW, Xu Y (2005) J Biomed Mater Res B 73:171

    Google Scholar 

  14. El-Sherif MD, Wheatley AM (2003) J Biomed Mater Res A 66:347

    Article  Google Scholar 

  15. Straub JA (2005) J Control Release 108:21

    Article  CAS  Google Scholar 

  16. Cui W (2005) J Biomed Mater Res B 73:171

    Google Scholar 

  17. Cheng S, Dy TC, Feinstein SB (1999) Am J Cardiol 81:41

    Article  Google Scholar 

  18. Mor AV, Robinson K, Schroff S (1994) J Am Soc Echocardiog 7:29

    Google Scholar 

  19. Uhich KE, Cannizzaro SM, Langer RS, Shakesheff KM (1999) Chem Rev 99:3181

    Article  Google Scholar 

  20. Klibanov AL (1999) Adv Drug Delivery Rev 37:139

    Article  CAS  Google Scholar 

  21. Yeo Y, Back N, Park K (2001) Biotechnol Bioeng 6:213

    CAS  Google Scholar 

  22. Jain AR (2000) Biomaterials 21:2475

    Article  CAS  Google Scholar 

  23. Zhu HG, McShane JM (2006) Chem Commun 2006:153

    Article  Google Scholar 

  24. Vrancken NM, Clays AD (1970) US Patent 3,526,906

  25. Jaeger CN, Trvernier HB (1971) British Patent 1,405,108

  26. Ogawa Y, Yamamoto M, Takada S, Okada H, Shimamoto T (1998) Chem Pharm Bull 36:1502

    Google Scholar 

  27. Liu R, Huang SS, Wan YH, Ma GH, Su ZG (2006) Colloid Surface B 51:30

    Article  CAS  Google Scholar 

  28. Koo YH, Chang TS, Choi SW, Park JH, Kim DY, Velev DO (2006) Chem Mater 18:3308

    Article  CAS  Google Scholar 

  29. Cheng JJ, Teply AB, Sherifi I, Sung J, Luther G, Gu XF, Levy-Nissenbaum E, Radovic-Moreno FA, Langer R, Farokhzad CO (2007) Biomaterials 28:869

    Article  CAS  Google Scholar 

  30. Xie SY, Wang SL, Zhao BK, Han C, Wang M, Zhou WZ (2008) Colloids Surf B Biointerfaces 67:199

    Article  CAS  Google Scholar 

  31. Cavalieri F, Hamassi EA, Chiessi E, Paradossi G (2005) Langmuir 21:8758

    Article  CAS  Google Scholar 

  32. Gong YJ, Zhang D, Gong XF, Tan KB, Liu Z (2006) Chinese Phys 15:1526

    Article  CAS  Google Scholar 

  33. Lu R, Dou HJ, Sun K (2008) Chem J Chinese U 29:1176

    CAS  Google Scholar 

  34. Graaf van der S, Schroen CGPH, Boom MR (2005) J Membrane Sci 251:7

    Article  Google Scholar 

  35. Lassalle V, Ferreira LM (2007) Macromol Biosci 7:767

    Article  CAS  Google Scholar 

  36. Liu R, Ma GH, Meng FT, Su ZG (2005) J Control Release 103:31

    Article  CAS  Google Scholar 

  37. Kanouni M, Rosano LH, Naouli N (2002) Adv Colloid Interfac 99:229

    Article  CAS  Google Scholar 

  38. Lindner RJ (2004) Nature 3:527

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (Project No. 30600751 and 30772349) as well as Science and Technology Committee of Shanghai (Project No. 05XD14015). We thank Instrumental Analysis Center of Shanghai Jiao Tong University for the help in characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, R., Dou, H., Qiu, Y. et al. Polymeric microcapsules with internal cavities for ultrasonic imaging: efficient fabrication and physical characterization. Colloid Polym Sci 287, 683–693 (2009). https://doi.org/10.1007/s00396-009-2014-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-009-2014-3

Keywords

Navigation