Skip to main content
Log in

Diffusing wave spectroscopy investigations of acid milk gels containing pectin

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The influence of the polysaccharide pectin on the gelation of acidified milk is studied in concentrated, undiluted, quiescent systems, primarily using diffusing wave spectroscopy. For pectins with a low degree of methylesterification (DM), interactions with milk-serum calcium yielded precipitated polysaccharide aggregates, even without acidification, that subsequently did not interact with casein micelles. However, high DM fine structures do not interact significantly with serum-calcium and absorb onto casein micelles as the pH is reduced below 5. A limited surface coverage of high DM pectin facilitates efficient bridging which enhances the rate of micelle aggregation and subsequent gelation and produces a clear signature in the shape of the measured MSD. The work highlights the fact that the behaviour of pectin in milk systems depends not only on the interaction of different polymeric fine structures with casein micelles, but also to a large extent on the interactions with calcium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. de Kruif CG, Zhulina EB (1996) Kappa-casein as a polyelectrolyte brush on the surface of casein micelles. Colloids Surf A: Physicochem Eng Aspects 117:151–159

    Article  Google Scholar 

  2. Schurtenberger P, Stradner A, Romer S, Urban C, Scheffold F (2001) Aggregation and gel formation in biopolymer solutions. CHIMIA J Int Chem, 55:155–159

    CAS  Google Scholar 

  3. Mezzenga T, Schurtenberger P, Burbidge A, Michel M (2005) Understanding food as soft materials. Nat Mater 4:729–749

    Article  CAS  Google Scholar 

  4. Kaláb M, Allan-Wojtas P, Phipps-Todd BE (1983) Development of microstructure in set-style non fat yoghurt—a review. Food Microstruct 2:51–66

    Google Scholar 

  5. Lucey JA, Singh H (1998) Formation and physical properties of acid milk gels: a review. Food Res Int 30:529–542

    Article  Google Scholar 

  6. Hemar Y, Singh H, Horne DS (2004) Determination of early stages of rennet-induced aggregation of casein micelles by diffusing wave spectroscopy and rheological measurements. Curr Appl Phys 4:362–365

    Article  Google Scholar 

  7. Alexander M, Dalgleish DG (2004) Application of transmission diffusing wave spectroscopy to the study of gelation of milk by acidification and rennet. Colloids Surf B 38:83–90

    Article  CAS  Google Scholar 

  8. Donato L, Alexander M, Dalgleish DG (2007) Acid gelation in heated and unheated milks: interactions between serum protein complexes and the surfaces of casein micelles. J Agric Food Chem 55:4160–4168

    Article  CAS  Google Scholar 

  9. Alexander M, Piska I, Dalgleish DG (2008) Investigation of particle dynamics in gels involving casein micelles: a diffusing wave spectroscopy and rheology approach. Food Hydrocoll 22:1124–1134

    Article  CAS  Google Scholar 

  10. Williats WGT, Knox P, Mikkelsen JD (2006) Pectin: new insights into an old polymer. Trends Food Sci Technol 17:97–104

    Article  CAS  Google Scholar 

  11. Maroziene A, de Kruif CG (2000) Interaction of pectin and casein micelles. Food hydrocoll 14:391–394

    Article  CAS  Google Scholar 

  12. Liu JR, Nakamura A, Corredig M (2006) Addition of pectin and soy soluble polysaccharide affects the particle size distribution of casein suspensions prepared from acidified skim milk. J Agric Food Chem 54:6241–6246

    Article  CAS  Google Scholar 

  13. Nakamura A, Yoshida R, Maeda H, Corredig M (2006) The stabilizing behaviour of soybean soluble polysaccharide and pectin in acidified milk beverages. Int Dairy J 16:361–369

    Article  CAS  Google Scholar 

  14. Fagan CC, O’Donell CP, Cullen PJ, Brennan CS (2006) The effect of dietary fibre inclusion on milk coagulation kinetics. J Food Eng 77:261–268

    Article  CAS  Google Scholar 

  15. Matia-Merino L, Lau K, Dickinson E (2004) Effects of low-methoxyl amidated pectin and ionic calcium on rheology and microstructure of acid-induced sodium caseinate gels. Food hydrocoll 18:271–281

    Article  CAS  Google Scholar 

  16. Matia-Merino L, Singh H (2007) Acid-induced gelation of milk protein concentrates with added pectin: effect of casein micelle dissociation. Food Hydrocoll 21:765–775

    Article  CAS  Google Scholar 

  17. Tuinier R, Rolin C, de Kruif CG (2002) Electrosorption of pectin onto casein micelles. Biomacromolecules 3:632–639

    Article  CAS  Google Scholar 

  18. Kravtchenko TP, Parker A, Trespoey A (1995) Colloidal stability and sedimentation of pectin-stabilized acid milk drinks. In: Dickinson E, Lorient D (eds) Food macromolecules and colloids. Royal Society of Chemistry, Cambridge, pp 345–351

    Google Scholar 

  19. Boulenguer P, Laurent MA (2003) Comparison of the stabilisation mechanism of acid dairy drink (ADD) induced by pectin and soluble soybean polysaccharide (SSP). In: Voragen AGJ et al (ed) Advances in pectin and pectinase research. Kluwer Academic, Dordrecht, pp 467–480

    Google Scholar 

  20. Tromp RH, De Kruif CG, van Eijk M, Rolin C (2004) On the mechanism of stabilisation of acidified milk drinks by pectin. Food hydrocoll 18:565–572

    Article  CAS  Google Scholar 

  21. Arltoft D, Madsen F, Ipsen R (2007) Screening of probes for specific localisation of polysaccharides. Food Hydrocoll 21:1062–1071

    Article  CAS  Google Scholar 

  22. Pereyra R, Schmidt KA, Wicker L (1997) Interaction and stabilization of acidified casein dispersions with low and high methoxyl pectins. J Agric Food chem 45:3448–3451

    Article  CAS  Google Scholar 

  23. Laurent MA, Boulenguer P (2003) Stabilization mechanism of acid dairy drinks (ADD) induced by pectin. Food hydrocoll 17:445–454

    Article  CAS  Google Scholar 

  24. Weitz DA, Pine DJ, Brown W (1993) Diffusing-wave spectroscopy. In Brown W (ed) Dynamic Light Scattering: The Method and Some Applications. Oxford University Press, Oxford, pp 652–720

    Google Scholar 

  25. Hemar Y, Pinder DN (2006) DWS microrheology of a linear polysaccharide. Biomacromolecules 7:674–676

    Article  CAS  Google Scholar 

  26. Williams MAK, Vincent RR, Pinder DN, Hemar Y (2008) Microrheological studies offer insights into polysaccharide gels. J Non-Newtonian Fluid Mech 149:63–70

    Article  CAS  Google Scholar 

  27. Jeurnink TJM, De Kruif KG (1993) Changes in milk on heating: viscosity measurements. J Dairy Res 60:139–150

    Google Scholar 

  28. Tuinier R, de Kruif CG (2002) Stability of casein micelles in milk. J Chem Phys 117:1290–1295

    Article  CAS  Google Scholar 

  29. van Vliet T, Lakemond CMM, Visschers RW (2004) Rheology and structure of milk protein gels. Curr Opin Colloid Interface Sci 9:298–304

    Article  CAS  Google Scholar 

  30. Romer S, Scheffold F, Schurtenberger P (2000) Sol-gel transition of concentrated colloidal suspensions. Phys Rev Lett 25:4980–4983

    Article  Google Scholar 

  31. Lucey JA, van Vliet T, Grolle K, Geurts T, Walstra P (1997) Properties of acid casein gels made by acidification with glucono-delta-lactone. 2. Syneresis, permeability and microstructural properties. Int Dairy J 7:389–397

    Article  CAS  Google Scholar 

  32. Fleer GJ, Cohen Stuart MA, Schetjems JMHM, Cosgrove T, Vincent B (1993) Polymers at Interfaces. Chapman & Hall, London

    Google Scholar 

  33. Einhorn-Stoll U, Salazar T, Jaafar B, Kunzek H (2001) Thermodynamic compatibility of sodium caseinate with different pectins. Influence of the milieu conditions and pectin modifications. Die Nahrung 45:332–337

    Article  CAS  Google Scholar 

  34. Pedersen HCA, Jorgensen BB (1991) Influence of pectin on the stability of casein solutions studied in dependence of varying pH and salt concentration. Food hydrocoll 5:323–328

    CAS  Google Scholar 

  35. Sejersen MT, Salomonsen T, Ipsen R, Clark R, Rolin C, Engelsen SB (2006) Zeta potential of pectin-stabilised casein aggregates in acidified milk drinks. Int Dairy J 17:302–307

    Google Scholar 

  36. Harte FM, Montes C, Adams M, San Martin-Gonzalez MF (2007) Solubilised micellar calcium induced low methoxyl-pectin aggregation during milk acidification. J Dairy Sci 90:2705–2709

    Article  CAS  Google Scholar 

  37. Belloque J, Ramos M (1999) Application of NMR spectroscopy to milk and dairy products. Trends Food Sci Technol 10:447–454

    Article  Google Scholar 

  38. Belton PS, Lyster RLJ, Richards CP (1985) The 31P nuclear magnetic resonance spectrum of cows’ milk. J Dairy Res 52:47–54

    Article  CAS  Google Scholar 

  39. Ward BR, Goddard SJ, Augustin MA, McKinnon I (1997) EDTA-induced dissociation of casein micelles and its effect on foaming properties of milk. J Dairy Res 64:495–504

    Article  CAS  Google Scholar 

  40. Pashkovski EE, Masters JG, Mehreteab A (2003) Viscoelastic scaling of colloidal gels in polymer solutions. Langmuir 19:3589–3595

    Article  CAS  Google Scholar 

  41. Williams MAK, Foster TJ, Schols HA (2003) Elucidation of Pectin Methylester Distributions by Capillary Electrophoresis. J Agric Food Chem 51:1777–1781

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the financial support from the MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand) for the PhD scholarship of R.R. Vincent and from Fonterra and FRST for the PhD scholarship of A. Cucheval. The authors would also like to thank the Manawatu Microscopy Centre, in particular Dr Dmitry Sokolov, for his assistance with the confocal microscopy. Dr. PJB Edwards is thanked for assistance with the NMR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. K. Williams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cucheval, A., Vincent, R.R., Hemar, Y. et al. Diffusing wave spectroscopy investigations of acid milk gels containing pectin. Colloid Polym Sci 287, 695–704 (2009). https://doi.org/10.1007/s00396-009-2012-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-009-2012-5

Keywords

Navigation