Skip to main content
Log in

Synthesis and aggregation study of tin nanoparticles and colloids obtained by chemical liquid deposition

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Tin colloids (Sn-Colls) and nanoparticles were synthesized by a chemical liquid deposition method (CLD). Sn0 was evaporated and codeposited with acetone, 2-propanol, and tetrahydrofurane vapors at 77 K to obtain colloidal dispersions. Sn-Coll were characterized by UV spectroscopy, transmission electron microscopy (TEM), high resolution transmission electron microscopy, selected area electron diffraction, thermal analysis, infrared spectroscopy [Fourier transform infrared (FTIR)], and light scattering. TEM micrographs of tin nanoparticles (Sn-Nps) revealed a particle size distribution between 2 and 4 nm for the three solvents used in the synthesis. UV studies showed strong absorption bands in the UV region, suggesting that the Sn-Nps obtained by CLD exhibit quantum confinement and typical bands of plasmons corresponded to aggregated particles. Electrophoresis measurement indicated a significant tendency of particle aggregation along time, which was verified by light scattering studies. The diffraction patterns revealed phases corresponding to metallic tin and FTIR studies showed the interaction Sn-solvent in the metal surface by Sn-O bonds, indicating a solvatation of metallic clusters. Thermal analysis revealed a good thermal stability of Sn-Nps. The mechanism of tin nanoparticles formation was also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sun Y, Xia Y (2002) Science 298:2176

    Article  CAS  Google Scholar 

  2. Tan Y, Dai X, Li Y, Zhu DJ (2003) Mater Chem 13:1069

    Article  CAS  Google Scholar 

  3. Turkevich J, Kim G (1970) Science 169:873

    Article  CAS  Google Scholar 

  4. Hongjin J, Kyoung-sik M, Hai D, Fay H, Wong CP (2006) Chem Phys Lett 429:492

    Article  Google Scholar 

  5. Klabunde KJ, Li YX, Tan BJ (1991) Chem Mater 3:30

    Article  CAS  Google Scholar 

  6. Reetz MT, Helbig W (1994) J Am Chem Soc 116:7401

    Article  CAS  Google Scholar 

  7. Tano T, Esumi K, Meguro K (1989) J Colloid Interf Sci 133:530

    Article  CAS  Google Scholar 

  8. Chem WX, Lee JY, liu Z (2002) Chem Commun 2588

  9. Yu WY, Liu HF (1998) Chem Mater 10:1205

    Article  CAS  Google Scholar 

  10. Klabunde KJ, Youngers G, Zuckerman E, Tan B (1992) J Solid State Inorg Chem 29:227

    CAS  Google Scholar 

  11. Klabunde KJ (1980) Chemistry of free atoms and particles. Academic, London

    Google Scholar 

  12. Stoeva SI, Klabunde KJ, Sorensen CM, Dragiera I (2002) J Am Chem Soc 124:2305

    Article  CAS  Google Scholar 

  13. Cárdenas G, León Y, Moreno Y, Peña O (2006) Colloid Polym Sci 284:644

    Article  Google Scholar 

  14. Lavayen V, O’Dwyer C, Santa Ana MA, Mirabal N, Benavente E, Cárdenas G, González G, Sotomayor Torres CM (2007) Appl Surf Sci 253:3444

    Article  CAS  Google Scholar 

  15. Cárdenas G (2005) J Chil Chem Soc 50:603

    Google Scholar 

  16. Sánchez S (2004) Opt Pur y Apl Vol 37 Núm 2

  17. Korotcenkov G (2005) Sensors and Actuators B 107:209

    Article  Google Scholar 

  18. Fan H, Reid S (2003) Chem Mater 15:564

    Article  CAS  Google Scholar 

  19. Kim HW, Shim SH, Lee C (2006) Ceram Int 32:943

    Article  CAS  Google Scholar 

  20. Lima CA, Oliva R, Cárdenas G, Silva EN, Miranda LC (2001) Mater Lett 51:357

    Article  CAS  Google Scholar 

  21. Cárdenas G, Segura R, Reyes-Gasga J (2004) Colloid Polym Sci 282:1206

    Article  Google Scholar 

  22. Arbiol J, Cabot C, Morante JR, Chen F, Liu M (2002) ApplPhys l Lett 18:3449

    Article  Google Scholar 

  23. Arbiol J, Peiró F, Cornet A, Morante JR, Pérez-Omil JA, Calvino, Mat JJ (2002) Sci Eng B 91–92:534

  24. Arbiol J, Cirera A, Peiró F, Cornet A, Morante JR, Delgado, Calvino JJ (2002) Appl Phys Lett 80:329–331

    Article  CAS  Google Scholar 

  25. Schmid G (Ed) (1994) Clusters and colloids: from theory to applications. VCH, Venheim

  26. Volokitin Y, Sinzig J, de Jongh LJ, Schmid G, Vargaftik MN, Moiseev I (1996) Nature 384:621

    Article  CAS  Google Scholar 

  27. Malm J-O, O’keefe MA (1997) Ultramicroscopy 68:13

    Article  CAS  Google Scholar 

  28. Casanove M-J, Lecante P, Snoeck E, Mosset A, Roucau C (1997) Journal of Physics III France 7:505

    Article  CAS  Google Scholar 

  29. Buffat P-A, Flüeli M, Sopycher R, Stadelmenn P, Borel J-P (1991) Faraday Discuss 92:173

    Article  CAS  Google Scholar 

  30. Segura R, Cárdenas G (2008) J Cryst Growth 310:495

    Article  Google Scholar 

  31. Bhattacharya V, Chattopadhyay K (2004) Mat Sci Eng A 375:932

    Article  Google Scholar 

  32. Powder Diffraction File, Inorganic Phases, JCPDS (1997), International Centre for Diffraction data, Pennsylvania, USA

  33. Henglein A, Bunsenges B (1995) Phys Chem 99:903

    CAS  Google Scholar 

  34. Creighton J, Eadon D (1991) J Chem Soc Faraday Trans 87:3881

    Article  CAS  Google Scholar 

  35. Kubo R (1962) J Phys Soc Jpn 17:975

    Article  CAS  Google Scholar 

  36. Marker M (1985) J Coll Interface Sci 105:297

    Article  Google Scholar 

  37. Cárdenas G, Klabunde KJ, Dale E (1986) Langmuir 3:986

    Article  Google Scholar 

  38. Allan KA, Gowenlock BG, Lindsell WE (1973) J Organometal Chem 55:229

    Article  CAS  Google Scholar 

  39. Almenningen A, Haaland A, Motzfeldt T (1967) J Organometal Chem 7:97

    Article  Google Scholar 

  40. Harrison PG, Healy MA (1973) J Organometal Chem 51:153

    Article  CAS  Google Scholar 

  41. Pettinari C, Lorenzotti A, Sclavi G, Cingolani A, Rivarola E, Colapietro M, Cassetta A (1995) J Organometal Chem 496:69

    Article  CAS  Google Scholar 

  42. Amalric-Popescu D, Bozon-Verduraz F (2001) Catal Today 70:139

    Article  CAS  Google Scholar 

  43. Segura R, Reyes-Gasga J, Cárdenas G (2005) Colloid Polym Sci 283:854

    Article  CAS  Google Scholar 

  44. Cárdenas G, Alvial M, Klabunde KJ, Pantoja O, Zoto H (1994) Colloid Polymer Science 272:310

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to CONICYT (AT-24071064; 21050655), AGCI, and CIPA for scholarship grants. Sincere thanks are also given to Mecesup Project UCHO (Beca reforzamiento de la red nacional de programas de doctorado), Graduate School of Universidad de Concepción, FONDECYT 1040456 and Innova Bío-Bío for the financial support. Also, thanks to Serveis Cientificotècnics of the Universitat de Barcelona, Spain, for the use of the HRTEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Cárdenas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meléndrez, M.F., Cárdenas, G., Díaz V, J. et al. Synthesis and aggregation study of tin nanoparticles and colloids obtained by chemical liquid deposition. Colloid Polym Sci 287, 13–22 (2009). https://doi.org/10.1007/s00396-008-1950-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-008-1950-7

Keywords

Navigation