Colloid and Polymer Science

, Volume 287, Issue 1, pp 1–11 | Cite as

Nanocomposite polymer hydrogels

Invited Review


The technological need for new and better soft materials as well as the drive for new knowledge and fundamental understanding has led to significant advances in the field of nanocomposite gels. A variety of complex gel structures with unique chemical, physical, and biological properties have been engineered or discovered at the nanoscale. The possibility to form self-assembled and supramolecular morphologies makes organic polymers and inorganic nanoparticles desirable building blocks for the design of water based gels. In this review, we highlight the most recent (2004–2008) accomplishments and trends in the field of nanocomposite polymer hydrogels with a focus on creative approaches to generating structures, properties, and function within mostly biotechnological applications. We examine the impact of published work and conclude with an outline on future directions and challenges that come with the design and engineering of new nanocomposite gels.


Hydrogel Nanocomposite Nanoparticle Polymer Silicate Metal nanoparticle 


  1. 1.
    Lovinger AJ (2005) Nano-, bio-, multi-, inter-,…: polymer research in an era of prefixes. J Macromol Sci, Part C 45(3):195–199CrossRefGoogle Scholar
  2. 2.
    Weiss RG, Terech P (2006) Molecular gels: materials with self-assembled fibrillar networks. Springer, Berlin, p 978Google Scholar
  3. 3.
    Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Adv Mater 18(11):1345–1360CrossRefGoogle Scholar
  4. 4.
    Nelson A, Cosgrove T (2004) Dynamic light scattering studies of poly(ethylene oxide) adsorbed on Llaponite: layer conformation and its effect on particle stability. Langmuir 20(24):10382–10388CrossRefGoogle Scholar
  5. 5.
    Nelson A, Cosgrove T (2004) A small-angle neutron scattering study of adsorbed poly(ethylene oxide) on laponite. Langmuir 20(6):2298–2304CrossRefGoogle Scholar
  6. 6.
    Pozzo D, Walker L (2004) Reversible shear gelation of polymer–clay dispersions. Colloids Surf, A Physicochem Eng Asp 240(1–3):187–198CrossRefGoogle Scholar
  7. 7.
    Can V, Okay O (2005) Shake gels based on Laponite–PEO mixtures: effect of polymer molecular weight. Des Monomers Polym 8(5):453–462CrossRefGoogle Scholar
  8. 8.
    Baghdadi H, Sardinha H, Bhatia S (2005) Rheology and gelation kinetics in Laponite dispersions containing poly(ethylene oxide). J Polym Sci, B, Polym Phys 43(2):233–240CrossRefGoogle Scholar
  9. 9.
    Loizou E, Butler P, Porcar L, Kesselman E, Talmon Y, Dundigalla A, Schmidt G (2005) Large scale structures in nanocomposite hydrogels. Macromolecules 38(6):2047–2049CrossRefGoogle Scholar
  10. 10.
    Li J, Jiang J, Li C, Lin M, Schwarz S, Rafailovich M, Sokojov J (2006) Effect of temperature on shear-induced anisotropic structure in polymer clay hydrogels. Macromol Rapid Commun 27(20):1787–1791CrossRefGoogle Scholar
  11. 11.
    Baghdadi HA, Jensen EC, Easwar N, Bhatia SR (2008) Evidence for re-entrant behavior in Laponite–PEO systems. Rheologica Acta 47(2):121–127CrossRefGoogle Scholar
  12. 12.
    Daga VK, Wagner NJ (2006) Linear viscoelastic master curves of neat and Laponite-filled poly(ethylene oxide)–water solutions. Rheologica Acta 45(6):813–824CrossRefGoogle Scholar
  13. 13.
    Loizou E, Butler P, Porcar L, Schmidt G (2006) Dynamic responses in nanocomposite hydrogels. Macromolecules 39(4):1614–1619CrossRefGoogle Scholar
  14. 14.
    Lin-Gibson S, Kim H, Schmidt G, Han CC, Hobbie EK (2004) Shear-induced structure in polymer–clay nanocomposite solutions. J Colloid Interface Sci 274(2):515–525CrossRefGoogle Scholar
  15. 15.
    de Bruyn JR, Pignon F, Tsabet E, Magnin A (2008) Micron-scale origin of the shear-induced structure in Laponite–poly(ethylene oxide) dispersions. Rheologica Acta 47(1):63–73CrossRefGoogle Scholar
  16. 16.
    Takahashi T, Yamada Y, Kataoka K, Nagasaki Y (2005) Preparation of a novel peg–clay hybrid as a DDS material: dispersion stability and sustained release profiles. J Control Release 107(3):408–416CrossRefGoogle Scholar
  17. 17.
    Lagaly G, Ziesmer S (2006) Sol–gel transitions of sodium montmorillonite dispersions by cationic end-capped poly(ethylene oxides) (surface modification of bentonites, iv). Colloid Polym Sci 284(9):947–956CrossRefGoogle Scholar
  18. 18.
    Pozzo DC, Walker LM (2007) Shear orientation of nanoparticle arrays templated in a thermoreversible block copolymer micellar crystal. Macromolecules 40(16):5801–5811CrossRefGoogle Scholar
  19. 19.
    Pozzo DC, Walker LM (2008) Macroscopic alignment of nanoparticle arrays in soft crystals of cubic and cylindrical polymer micelles. Eur Phys J, E Soft Matter 26(1/2):183–189Google Scholar
  20. 20.
    Nelson A, Cosgrove T (2005) Small-angle neutron scattering study of adsorbed Pluronic tri-block copolymers on Laponite. Langmuir 21(20):9176–9182CrossRefGoogle Scholar
  21. 21.
    Gorelikov I, Field LM, Kumacheva E (2004) Hybrid microgels photoresponsive in the near-infrared spectral range. J Am Chem Soc 126(49):15938–15939CrossRefGoogle Scholar
  22. 22.
    Nayak S, Lyon LA (2004) Photoinduced phase transitions in poly(n-isopropylacrylamide) microgels. Chem Mater 16(13):2623–2627CrossRefGoogle Scholar
  23. 23.
    Zhao X, Ding X, Deng Z, Zheng Z, Peng Y, Long X (2005) Thermoswitchable electronic properties of a gold nanoparticle/hydrogel composite. Macromol Rapid Commun 26(22):1784–1787CrossRefGoogle Scholar
  24. 24.
    Haraguchi K, Takehisa T, Ebato M (2006) Control of cell cultivation and cell sheet detachment on the surface of polymer/clay nanocomposite hydrogels. Biomacromolecules 7(11):3267–3275CrossRefGoogle Scholar
  25. 25.
    Cho EC, Kim JW, Fernandez-Nieves A, Weitz DA (2008) Highly responsive hydrogel scaffolds formed by three-dimensional organization of microgel nanoparticles. Nano Lett 8(1):168–172CrossRefGoogle Scholar
  26. 26.
    Hou Y, Matthews AR, Smitherman AM, Bulick AS, Hahn MS, Hou H, Han A, Grunlan MA (2008) Thermoresponsive nanocomposite hydrogels with cell-releasing behavior. Biomaterials 29(22):3175–3184CrossRefGoogle Scholar
  27. 27.
    Satarkar NS, Hilt ZJ (2008) Hydrogel nanocomposites as remote-controlled biomaterials. Acta Biomaterialia 4(1):11–16CrossRefGoogle Scholar
  28. 28.
    Zhu M, Liu Y, Sun B, Zhang W, Liu X, Yu H, Zhang Y, Kuckling D, Adler HJP (2006) A novel highly resilient nanocomposite hydrogel with low hysteresis and ultrahigh elongation. Macromol Rapid Commun 27(13):1023–1028CrossRefGoogle Scholar
  29. 29.
    Haraguchi K, Li HJ, Matsuda K, Takehisa T, Elliott E (2005) Mechanism of forming organic/inorganic network structures during in-situ free-radical polymerization in PNIPA-clay nanocomposite hydrogels. Macromolecules 38(8):3482–3490CrossRefGoogle Scholar
  30. 30.
    Haraguchi K, Li HJ (2006) Mechanical properties and structure of polymer–clay nanocomposite gels with high clay content. Macromolecules 39(5):1898–1905CrossRefGoogle Scholar
  31. 31.
    Haraguchi K, Li HJ (2005) Control of the coil-to-globule transition and ultrahigh mechanical properties of PNIPA in nanocomposite hydrogels. Angewandte Chemie 44(40):6500–6504CrossRefGoogle Scholar
  32. 32.
    Nie J, Du B, Oppermann W (2006) Dynamic fluctuations and spatial inhomogeneities in poly(n-isopropylacrylamide)/clay nanocomposite hydrogels studied by dynamic light scattering. J Phys Chem, Part B 110(23):11167–11175CrossRefGoogle Scholar
  33. 33.
    Nie J, Du B, Oppermann W (2005) Swelling, elasticity, and spatial inhomogeneity of poly(n-isopropylacrylamide)/clay nanocomposite hydrogels. Macromolecules 38(13):5729–5736CrossRefGoogle Scholar
  34. 34.
    Okay O, Oppermann W (2007) Polyacrylamide–clay nanocomposite hydrogels: rheological and light scattering characterization. Macromolecules 40(9):3378–3387CrossRefGoogle Scholar
  35. 35.
    Mu J, Zheng S (2007) Poly(n-isopropylacrylamide) nanocrosslinked by polyhedral oligomeric silsesquioxane: temperature-responsive behavior of hydrogels. J Colloid Interface Sci 307(2):377–385CrossRefGoogle Scholar
  36. 36.
    Zhang J, Wang A (2007) Study on superabsorbent composites. IX: synthesis, characterization and swelling behaviors of polyacrylamide/clay composites based on various clays. React Funct Polym 67(8):737–745CrossRefGoogle Scholar
  37. 37.
    Ziesmer S, Stock N (2008) Synthesis of bifunctional core–shell particles with a porous zeolite core and a responsive polymeric shell. Colloid Polym Sci 286(6):831–836CrossRefGoogle Scholar
  38. 38.
    Kokabi M, Sirousazar M, Hassan ZM (2007) PVA–clay nanocomposite hydrogels for wound dressing. Eur Polym J 43(3):773–781CrossRefGoogle Scholar
  39. 39.
    Liu J, Hoffmann H (2004) Hydrogels in aqueous phases of polyvinylalcohol (PVA), surfactants and clay minerals. Colloid Polym Sci 283(1):24–32CrossRefGoogle Scholar
  40. 40.
    Paranhos CM, Soares BG, Oliveira RN, Pessan LA (2007) Poly(vinyl alcohol)/clay-based nanocomposite hydrogels: Swelling behavior and characterization. Macromol Mater Eng 292(5):620–626CrossRefGoogle Scholar
  41. 41.
    Paranhos CM, Soares BG, Machado JC, Windmöller D, Pessan LA (2007) Microstructure and free volume evaluation of poly(vinyl alcohol) nanocomposite hydrogels. Eur Polym J 43:4882–4890CrossRefGoogle Scholar
  42. 42.
    Matos MA, White LR, Tilton RD (2006) Electroosmotically enhanced mass transfer through polyacrylamide gels. J Colloid Interface Sci 300(1):429–436CrossRefGoogle Scholar
  43. 43.
    Hill RJ (2007) Electric-field-enhanced transport in polyacrylamide hydrogel nanocomposites. J Colloid Interface Sci 316(2):635–644CrossRefGoogle Scholar
  44. 44.
    Wang C, Flynn NT, Langer R (2004) Controlled structure and properties of thermoresponsive nanoparticle–hydrogel composites. Adv Mater 16(13):1074–1079CrossRefGoogle Scholar
  45. 45.
    Tokarev I, Tokareva I, Minko S (2008) Gold-nanoparticle-enhanced plasmonic effects in a responsive polymer gel. Adv Mater 20(14):2730–2734CrossRefGoogle Scholar
  46. 46.
    Mohan YM, Premkumar T, Lee K, Geckeler KE (2006) Fabrication of silver nanoparticles in hydrogel networks. Macromol Rapid Commun 27(16):1346–1354CrossRefGoogle Scholar
  47. 47.
    Mohan YM, Lee K, Premkumar T, Geckeler KE (2007) Hydrogel networks as nanoreactors: a novel approach to silver nanoparticles for antibacterial applications. Polymer 48(1):158–164CrossRefGoogle Scholar
  48. 48.
    Xiang Y, Chen D (2007) Preparation of a novel pH-responsive silver nanoparticle/poly(HEMA–PEGMA–MAA) composite hydrogel. Eur Polym J 43(10):4178–4187CrossRefGoogle Scholar
  49. 49.
    Saravanan P, Padmanabha Raju M, Alam S (2007) A study on synthesis and properties of Ag nanoparticles immobilized polyacrylamide hydrogel composites. Mater Chem Phys 103(2–3):278–282CrossRefGoogle Scholar
  50. 50.
    Murthy PSK, Murali Mohan Y, Varaprasad K, Sreedhar B, Mohana Raju K (2008) First successful design of semi-IPN hydrogel-silver nanocomposites: a facile approach for antibacterial application. J Colloid Interface Sci 318(2):217–224CrossRefGoogle Scholar
  51. 51.
    Basit H, Pal A, Sen S, Bhattacharya S (2008) Two-component hydrogels comprising fatty acids and amines: structure, properties, and application as a template for the synthesis of metal nanoparticles. Chemistry—A European Journal 14(21):6534–6545CrossRefGoogle Scholar
  52. 52.
    Lu Y, Spyra P, Mei Y, Ballauff M, Pich A (2007) Composite hydrogels: robust carriers for catalytic nanoparticles. Macromolecular Chemistry and Physics 208(3):254–261CrossRefGoogle Scholar
  53. 53.
    Sahiner N (2006) In situ metal particle preparation in cross-linked poly(2-acrylamido-2-methyl-1-propansulfonic acid) hydrogel networks. Colloid Polym Sci 285(3):283–292CrossRefGoogle Scholar
  54. 54.
    Cohen Stuart MA (2008) Supramolecular perspectives in colloid science. Colloid Polym Sci 286(8):855–864CrossRefGoogle Scholar
  55. 55.
    Schmidt AM (2007) Thermoresponsive magnetic colloids. Colloid Polym Sci 285(9):953–966CrossRefGoogle Scholar
  56. 56.
    Heim E, Harling S, Ludwig F, Menzel H, Schilling M (2008) Fluxgate magnetorelaxometry for characterization of hydrogel polymerization kinetics and physical entrapment capacity. J Phys Condens Matter 20(20):204106CrossRefGoogle Scholar
  57. 57.
    Liu T-Y, Hu S-H, Liu K-H, Liu D-M, Chen S-Y (2008) Study on controlled drug permeation of magnetic-sensitive ferrogels: effect of fe3o4 and PVA. J Control Release 126(3):228–236CrossRefGoogle Scholar
  58. 58.
    Sunderland CJ, Steiert M, Talmadge JE, Derfus AM, Barry SE (2006) Targeted nanoparticles for detecting and treating cancer. Drug Dev Res 67(1):70–93CrossRefGoogle Scholar
  59. 59.
    Ramanujan RV, Lao LL (2006) The mechanical behavior of smart magnet–hydrogel composites. Smart Mater Struc 15(4):952–956CrossRefGoogle Scholar
  60. 60.
    Mitra RN, Das PK (2008) In situ preparation of gold nanoparticles of varying shape in molecular hydrogel of peptide amphiphiles. J Phys Chem, Part C 112(22):8159–8166CrossRefGoogle Scholar
  61. 61.
    Cooper CL, Dubin PL, Kayitmazer AB, Turksen S (2005) Polyelectrolyte–protein complexes. Curr Opin Colloid interface Sci 10(1–2):52–78CrossRefGoogle Scholar
  62. 62.
    Shchipunov YA, Karpenko TY, Krekoten AV, Postnova IV (2005) Gelling of otherwise nongelable polysaccharides. J Colloid Interface Sci 287(2):373–378CrossRefGoogle Scholar
  63. 63.
    Wang G, Zhang L (2007) Manipulating formation and drug-release behavior of new sol–gel silica matrix by hydroxypropyl guar gum. J Phys Chem, Part B 111(36):10665–10670CrossRefGoogle Scholar
  64. 64.
    Ma J, Xu Y, Zhang Q, Zha L, Liang B (2007) Preparation and characterization of ph-and temperature-responsive semi-IPN hydrogels of carboxymethyl chitosan with poly(n-isopropyl acrylamide) crosslinked by clay. Colloid Polym Sci 285(4):479–484CrossRefGoogle Scholar
  65. 65.
    Ma J, Xu Y, Fan B, Liang B (2007) Preparation and characterization of sodium carboxymethylcellulose/poly(n-isopropylacrylamide)/clay semi-IPN nanocomposite hydrogels. Eur Polym J 43(6):2221–2228CrossRefGoogle Scholar
  66. 66.
    Pich AZ, Adler HJP (2007) Composite aqueous microgels: an overview of recent advances in synthesis, characterization and application. Polym Int 56(3):291–307CrossRefGoogle Scholar
  67. 67.
    Dimitrov I, Trzebicka B, Müller AHE, Dworak A, Tsvetanov CB (2007) Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities. Prog Polym Sci 32(11):1275–1343CrossRefGoogle Scholar
  68. 68.
    Das M, Zhang H, Kumacheva E (2006) Microgels: old materials with new applications. Annu Rev Mater Res 36:117–142CrossRefGoogle Scholar
  69. 69.
    Nayak S, Lyon LA (2005) Soft nanotechnology with soft nanoparticles. Angew Chem Int Ed Engl 44:7686–7708CrossRefGoogle Scholar
  70. 70.
    Soddemann M, Richtering W (2004) Hydrogels filled with thermosensitive microgel particles. Prog Colloid Polym Sci 129:88–94Google Scholar
  71. 71.
    Musch J, Schneider S, Lindner P, Richtering W (2008) Unperturbed volume transition of thermosensitive poly-(n-isopropylacrylamide) microgel particles embedded in a hydrogel matrix. J Phys Chem, Part B 112(20):6309–6314CrossRefGoogle Scholar
  72. 72.
    Webb AR, Kumar VA, Ameer GA (2007) Biodegradable poly (diol citrate) nanocomposite elastomers for soft tissue engineering. J Mater Chem 17(9):900–906CrossRefGoogle Scholar
  73. 73.
    Zheng JP, Wang CZ, Wang XX, Wang HY, Zhuang H, Yao KD (2007) Preparation of biomimetic three-dimensional gelatin/montmorillonite–chitosan scaffold for tissue engineering. React Funct Polym 67(9):780–788CrossRefGoogle Scholar
  74. 74.
    Leeuwenburgh SCG, Jansen JA, Mikos AG (2007) Functionalization of oligo (poly(ethylene glycol) fumarate) hydrogels with finely dispersed calcium phosphate nanocrystals for bone-substituting purposes. J Biomater Sci, Polym Ed 18(12):1547–1564Google Scholar
  75. 75.
    Yu Y, Xu Y, Ning H, Zhang S (2008) Swelling behaviors of thermoresponsive hydrogels cross-linked with acryloyloxyethylaminopolysuccinimide. Colloid Polym Sci 286:1165–1171CrossRefGoogle Scholar
  76. 76.
    Lee WF, Chen YC (2004) Effect of bentonite on the physical properties and drug-release behavior of poly (AA-CO-PEGMEA)/bentonite nanocomposite hydrogels for mucoadhesive. J Appl Polym Sci 91(5):2934–2941CrossRefGoogle Scholar
  77. 77.
    Lynch I, de Gregorio P, Dawson KA (2005) Simultaneous release of hydrophobic and cationic solutes from thin-film “plum-pudding” gels: A multifunctional platform for surface drug delivery. J Phys Chem, Part B 109(13):6257–6261CrossRefGoogle Scholar
  78. 78.
    Salvati A, Soderman O, Lynch I (2007) Plum-pudding gels as a platform for drug delivery: Understanding the effects of the different components on the diffusion behavior of solutes. J Phys Chem, Part B, 111(25):7367–7376CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Purdue University, Biomedical EngineeringWest LafayetteUSA

Personalised recommendations