Skip to main content

Conductivity of flowing polyaniline suspensions in electric field


The formation of chain structures by polarized polyaniline (PANI) particles suspended in silicone oil in the electric field has been monitored by recording suspension conductivity in the course of time. For that purpose, three types of PANI particles differing in the conductivity (3.1 × 10−3, 1.7 × 10−1, and 2.0 × 10−1 S cm−1) have been chosen out of a series of nine samples prepared by controlled protonation of PANI base in orthophosphoric acid solutions. Relaxation times reflecting this process and characterizing the rate of the response to the electric field decreased with particle conductivity, indicating a higher polarizability of particles. At the same time, the maximum conductivity of suspension increased as a consequence of the electric and shear forces acting on the particles. In the shear fields, shorter relaxation times appeared than at rest. The simultaneous measurement of the shear stress confirmed that the conductivity investigation can reliably characterize the development of electrorheological structures.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    Winslow WM (1947) US Patent 2,417,850

  2. 2.

    Block H, Kelly JP (1988) Electro-rheology. J Phys D Appl Phys 21:1661–1677

    Article  CAS  Google Scholar 

  3. 3.

    Jordan TC, Shaw MT (1989) Electrorheology. IEEE Trans Electron Insul 24:849–878

    Article  CAS  Google Scholar 

  4. 4.

    Block H, Kelly JP, Qin A, Watson T (1990) Materials and mechanisms in electrorheology. Langmuir 6:6–14

    Article  CAS  Google Scholar 

  5. 5.

    Parthasarathy M, Klingenberg DJ (1996) Electrorheology: mechanisms and models. Mater Sci Eng R 17:57–103

    Article  Google Scholar 

  6. 6.

    Hao T (2001) Electrorheological fluids. Adv Mater 13:1847–1857

    Article  CAS  Google Scholar 

  7. 7.

    Hao T (2002) Electrorheological suspensions. Adv Colloid Interface Sci 97:1–35

    Article  CAS  Google Scholar 

  8. 8.

    Quadrat O, Stejskal J (2006) Polyaniline in electrorheology. J Ind Eng Chem 12:352–361

    CAS  Google Scholar 

  9. 9.

    Choi HJ, Lee JH, Cho MS, Jhon MS (1999) Electrorheological characterization of semiconducting polyaniline suspension. Polym Eng Sci 39:493–499

    Article  CAS  Google Scholar 

  10. 10.

    Lengálová A, Pavlínek V, Sáha P, Quadrat O, Kitano T, Stejskal J (2003) Influence of particle concentration on the electrorheological efficiency of polyaniline suspensions. Eur Polym J 39:641–645

    Article  Google Scholar 

  11. 11.

    Pavlínek V, Sáha P, Kitano T, Stejskal J, Quadrat O (2005) The effect of polyaniline layer deposited on silica particles on electrorheological and dielectric properties of their silicone-oil suspensions. Physica A 353:21–28

    Article  Google Scholar 

  12. 12.

    Sung JH, Cho MS, Choi HJ, Jhon MS (2004) Electrorheology of semiconducting polymers. J Ind Eng Chem 10:1217–1229

    CAS  Google Scholar 

  13. 13.

    Stejskal J, Kratochvíl P, Jenkins AD (1996) The formation of polyaniline and the nature of its structures. Polymer 37:367–369

    Article  CAS  Google Scholar 

  14. 14.

    Hong CH, Choi HJ (2007) Shear stress and dielectric analysis of H3PO4 doped polyaniline based electrorheological fluid. J Macromol Sci B Phys 46:683–692

    Article  CAS  Google Scholar 

  15. 15.

    Choi HJ, Cho MS, To K (1998) Electrorheological and dielectric characteristics of semiconducting polyaniline–silicone oil suspensions. Physica A 254:272–279

    Article  CAS  Google Scholar 

  16. 16.

    Chaudhari HK, Kelkar DS (1997) Investigation of structure and electrical conductivity in doped polyaniline. Polym Int 42:380–384

    Article  CAS  Google Scholar 

  17. 17.

    Quadrat O, Stejskal J, Kratochvíl P, Klason C, McQueen D, Kubát J, Sáha P (1998) Electrical properties of polyaniline suspensions. Synth Met 97:37–42

    Article  CAS  Google Scholar 

  18. 18.

    Stejskal J, Gilbert RG (2002) Polyaniline. Preparation of a conducting polymer (IUPAC technical report). Pure Appl Chem 74:857–867

    Article  CAS  Google Scholar 

  19. 19.

    Blinova NV, Stejskal J, Trchová M, Prokeš J (2008) Control of polyaniline conductivity and contact angles by partial protonation. Polym Int 57:66–69

    Article  CAS  Google Scholar 

  20. 20.

    Klingenberg DJ, van Swol F, Zukoski CF IV (1991) The small shear rate response of electrorheological suspensions. 1. Simulation in the point-dipole limit. J Chem Phys 94:6160–6169

    Article  CAS  Google Scholar 

  21. 21.

    Marshall L, Zukoski CF IV, Goodwin JW (1989) Effects of electric fields on the rheology of non-aqueous concentrated suspensions. J Chem Soc Faraday Trans 85:2785–2795

    Article  CAS  Google Scholar 

  22. 22.

    Wu CW, Conrad H (1997) Dielectric and conduction effects in non-ohmic electrorheological fluids. Phys Rev E 56:5789–5797

    Article  CAS  Google Scholar 

  23. 23.

    Lee JH, Cho MS, Choi HJ, Jhon MS (1999) Effect of polymerization temperature on polyaniline based electrorheological suspensions. Colloid Polym Sci 277:73–76

    Article  CAS  Google Scholar 

  24. 24.

    Cho MS, Cho YH, Choi HJ, Jhon MS (2003) Synthesis and electrorheological characteristics of polyaniline-coated poly(methyl methacrylate) microsphere: size effect. Langmuir 19:5875–5881

    Article  CAS  Google Scholar 

Download references


The authors thank the Ministry of Education, Youth and Sports of the Czech Republic (MSM—7088352101) and the Grant Agency of the Czech Republic (202/06/0419) for financial support.

Author information



Corresponding author

Correspondence to Vladimír Pavlínek.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stěnička, M., Pavlínek, V., Sáha, P. et al. Conductivity of flowing polyaniline suspensions in electric field. Colloid Polym Sci 286, 1403–1409 (2008).

Download citation


  • Electrorheology
  • Polyaniline
  • Conducting polymer
  • Protonation degree
  • Conductivity
  • Relaxation time