Skip to main content
Log in

Determination of intrinsic viscosities of macromolecules and nanoparticles. Comparison of single-point and dilution procedures

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The determination of the intrinsic viscosity by single-point determinations, like that based on the Solomon–Ciuta equation, have been proposed as efficient alternatives to dilution procedures. With a basis on theoretical analysis and computer simulation, we evaluate the systematic and global bias of the Solomon–Ciuta result and show how it depends on the strength of the concentration dependence of the solution viscosity (represented by the intrinsic viscosity and the Huggins constant) and the concentration of the single measured solution. We propose that an estimated Huggins constant can be employed in a corrected Solomon–Ciuta procedure, which may yield results for the intrinsic viscosity that are even more accurate than those from the Huggins extrapolation. This gives support and utility to the use of the single-point procedure when the intrinsic viscosity has to be determined for a unique concentration. We also pinpoint specific circumstances where the dilution–extrapolation procedures should be preferred.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Elias HG (1977) Macromolecules, vol. 1. Wiley Interscience, New York

    Google Scholar 

  2. Billmeyer FW Jr (1984) Textbook of polymer science, 3rd edn. Wiley Interscience, New York

    Google Scholar 

  3. Munk P, Aminabhavi TM (2002) Introduction to macromolecular science, 2nd edn. Wiley, New York

    Google Scholar 

  4. Harding SE (1997) Prog Biophys Mol Biol 68:207–262

    Article  CAS  Google Scholar 

  5. van Holde KE, Johnson W, Ho P (1998) Principles of physical biochemistry, 2nd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  6. Hunter RH (2001) Foundations of colloid science. Oxford University Press, Oxford

    Google Scholar 

  7. Bohdanecký M, Kovár J (1982) Viscosity of polymer solutions. Elsevier, Amsterdam

    Google Scholar 

  8. Kulicke WM, Clasen C (2004) Viscosimetry of polymers and polyelectrolytes. Springer, Berlin

    Google Scholar 

  9. Graessley WW (2004) Polymeric liquids and networks: structure and properties. Garland Science, New York

    Google Scholar 

  10. García Bernal JM, Tirado MM, García de la Torre J (1991) Macromolecules 24:593–598

    Article  Google Scholar 

  11. Freire JJ, Prats R, Pla J, García de la Torre J (1984) Macromolecules 17:1815–1821

    Article  CAS  Google Scholar 

  12. Freire JJ (1999) Adv Polym Sci 143:35–112

    Article  CAS  Google Scholar 

  13. Pamies R, López Martínez MC, Hernández Cifre JG, García de la Torre J (2005) Macromolecules 38:1371–1377

    Article  CAS  Google Scholar 

  14. Yamakawa H, Fujii M (1974) Macromolecules 7:128–135

    Article  CAS  Google Scholar 

  15. Bohdanecký M (1983) Macromolecules 16:1483–1492

    Article  Google Scholar 

  16. Ortega A, García de la Torre J (2007) Biomacromolecules 8:2464–2475

    Article  CAS  Google Scholar 

  17. Ortega A, García de la Torre J (2003) J Chem Phys 119:9914–9919

    Article  CAS  Google Scholar 

  18. García de la Torre J, Del Río Echenique G, Ortega A (2007) J Polym Sci B Polym Phys Ed 111:955–961

    Google Scholar 

  19. Huggins ML (1942) J Am Chem Soc 64:2716–2720

    Article  CAS  Google Scholar 

  20. Sandler SR, Karo W, Bonestel J, Perace E (1998) Polymer synthesis and characterization. A laboratory manual. Academic, New York

    Google Scholar 

  21. Lee J, Tripathi A (2005) Anal Chem 77:7137–7147

    Article  CAS  Google Scholar 

  22. Solomon OF, Ciuta IZ (1962) J Appl Polym Sci 6:683–686

    Article  CAS  Google Scholar 

  23. Solomon OF, Gotesman BS (1967) Makromol Chem 104:177–184

    Article  CAS  Google Scholar 

  24. Haney MA (1985) Am Lab 17:41–56

    CAS  Google Scholar 

  25. Haney MA (1985) Am Lab 17:116–126

    CAS  Google Scholar 

  26. Dutta PK, Hammons K, Willibey B, Haney MA (1991) 536:113–121

    Article  CAS  Google Scholar 

  27. Bevington PR (1969) Data reduction and error analysis for the physical sciences. McGraw-Hill, New York

    Google Scholar 

  28. Kraemer EO (1938) Ind Eng Chem 30:1200–1203

    Article  CAS  Google Scholar 

  29. López Martínez MC, Díaz FG, Ortega A, García de la Torre J (2003) J Chem Ed 80:1036–1038

    Article  Google Scholar 

  30. Elias HG (1999) Makromoleküle chemische, struktur und synthesen. Wiley-VCH, Weinheim

    Google Scholar 

  31. Kurata M, Tsunashima Y (1989) Viscosity-molecular weight relationships and unperturbed dimensions of linear chain molecules, 3rd edn. Wiley, New York

    Google Scholar 

  32. Yamakawa H (1961) Macromolecules 34:1360–1372

    CAS  Google Scholar 

  33. Harvey JD, Geddes R, Wills PR (1979) Biopolymers 18:2249–2260

    Article  CAS  Google Scholar 

  34. Harrington WF, Burke M (1972) Biochemistry 11:1448–1455

    Article  CAS  Google Scholar 

  35. Tirrell M, Middleman S (1979) Biopolymers 18:59–72

    Article  CAS  Google Scholar 

  36. Riseman J, Ullman R (1951) J Chem Phys 19:578–584

    Article  CAS  Google Scholar 

  37. Sakai T (1968) J Polym Sci 6:1535–1549

    CAS  Google Scholar 

  38. Ahmad F, Salahuddin A (1974) Biochemistry 13:245–249

    Article  CAS  Google Scholar 

  39. Sandell, LS, Goring DAI (1970) Macromolecules 3:50–54

    Article  CAS  Google Scholar 

  40. Geerinssen H, Schutzeichel P, Wolf BA (1991) Macromolecules 24:304–309

    Article  Google Scholar 

  41. Batchelor GK (1977) J Fluid Mech 83:97–117

    Article  Google Scholar 

  42. Peterson JM, Fixman M (1963) J Chem Phys 39:2516–2523

    Article  CAS  Google Scholar 

  43. Jones DAR, Learly B, Boger DV (1991) J Colloid Interface Sci 147:479–495

    Article  CAS  Google Scholar 

  44. Monkos K (1994) Int J Biol Macromol 16:31–35

    Article  CAS  Google Scholar 

  45. Monkos K (2005) Biochim Biophys Acta 1748:100–109

    CAS  Google Scholar 

  46. Sato T, Norisuye T, Fujita H (1984) Macromolecules 17:2696–2700

    Article  CAS  Google Scholar 

  47. Kashiwagi K, Norisuye T, Fujita H (1981) Macromolecules 14:1220–1125

    Article  Google Scholar 

  48. Kuwata M, Murakami H, Norisuye T, Fujita H (1984) Macromolecules 17:2731–2734

    Article  CAS  Google Scholar 

  49. Monkos K (1999) Int J Biol Macromol 26:155–159

    Article  CAS  Google Scholar 

  50. Kotera A, Saito P, Mizuno H, Taki N (1975) Bull Chem Soc Jpn 48:1176–1179

    Article  CAS  Google Scholar 

  51. Emes CH, Rowe A (1978) Biochim Biophys Acta 537:110–124

    CAS  Google Scholar 

  52. Lederer K, Schurz J (1972) Biopolymers 11:1989–1993

    Article  CAS  Google Scholar 

  53. Lavialle F, de Foresta B, Vacher M, Nicot C, Alfsen A (1979) Eur J Biochem 95:561–567

    Article  CAS  Google Scholar 

  54. Gabriel DA, Hadler NM (1981) J Biol Chem 256:3240–3244

    CAS  Google Scholar 

  55. Fang Y, Takahashi R, Nishinari K (2004) Biopolymers 74:302–315

    Article  CAS  Google Scholar 

  56. Nandi P, Bhattarai A, Das B (2007) J Polym Sci B Polym Phys Ed 45:1765–1770

    Article  CAS  Google Scholar 

  57. Rholan M, Nicolas P, Cohen P (1982) Biochemistry 21:4968–4973

    Article  Google Scholar 

  58. Wierenga AM, Philipse AP (1996) J Colloid Interface Sci 180:360–370

    Article  CAS  Google Scholar 

  59. Arias C, Yagüe A, Rueda C, García Blanco F (1998) Biophys Chem 72:307–312

    Article  CAS  Google Scholar 

  60. Hermans J Jr (1962) J Colloid Sci 17:638–648

    Article  CAS  Google Scholar 

  61. Berry DH, Russel WB (1987) J Fluid Mech 180:475–494

    Article  CAS  Google Scholar 

  62. Huidt S, Ferry JD, Roelke DL, Greaser ML (1983) Macromolecules 16:740–745

    Article  Google Scholar 

  63. Graf C, Kramer H, Deggelmann M, Hagenbüchle M, Johner C, Martin C, Weber R (1993) J Chem Phys 98:4920–4928

    Article  CAS  Google Scholar 

  64. Aharoni SM (1987) Macromolecules 20:2010–2017

    Article  CAS  Google Scholar 

  65. Pamies R (2006) Ph.D. thesis, Universidad de Murcia

  66. Ma XD, Pawlik M (2007) Carbohydr Polym 70:15–24

    Article  CAS  Google Scholar 

  67. Kaneda I, Kobayashi A, Miyazaw K, Yanaki T (2002) Polymer 43:1301–1305

    Article  CAS  Google Scholar 

  68. Davis RM, Russel WB (1987) Macromolecules 20:518–525

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was performed within a Grupo de Excelencia de la Región de Murcia (grant 04531/GERM/06). Support was also provided by grant CTQ-2006-06831 from Ministerio de Educación y Ciencia (MEC), including FEDER funds. J.G.H.C. was the recipient of a Ramón y Cajal postdoctoral contract and R.P. acknowledges a predoctoral fellowship from MEC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José García de la Torre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pamies, R., Hernández Cifre, J.G., del Carmen López Martínez, M. et al. Determination of intrinsic viscosities of macromolecules and nanoparticles. Comparison of single-point and dilution procedures. Colloid Polym Sci 286, 1223–1231 (2008). https://doi.org/10.1007/s00396-008-1902-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-008-1902-2

Keywords

Navigation