Skip to main content
Log in

Sedimentation and drying dissipative patterns of ternary mixtures of colloidal silica spheres having different sizes

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The sedimentation and drying dissipative structural patterns were formed during the course of drying ternary mixtures of colloidal silica spheres of 183 nm, 305 nm, and 1.205 μm in diameter in aqueous suspension on a watch glass, a glass dish, and a cover glass. The patterns were observed by closed-up pictures, metallurgical optical microscopy, 3D profile microscopy, reflection spectroscopy and AFM images. The concentrations of the three spheres ranged from 0.0023 to 0.0128 keeping the same concentrations for each spheres. Broad ring-like sedimentation patterns were formed within a short time in suspension state especially in a glass dish. In a watch glass, colorful three layered ring-like drying patterns were observed and composed of the outer, middle and inner layers of small, medium, and large spheres, respectively. The three colored segregated layers were formed by the balancing between the outward convectional flow and the inward sedimentation of spheres. In a glass dish, wave-like macroscopic drying patterns were observed in the intermediate areas between the outside edge of the broad ring at the central area and the inner wall of the cell especially at low sphere concentrations. The size of the broad ring at the central area increased as sphere concentration increased. On a cover glass, size segregation also took place, i.e., small, medium, and large spheres located at the outer, medium, and central areas, though these segregations were not so complete compared with those on a watch glass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Terada T, Yamamoto R, Watanabe T (1934) Proc Imper Acad Tokyo 10:10

    Google Scholar 

  2. Terada T, Yamamoto R, Watanabe T (1934) Sci Paper Inst Phys Chem Res Jpn 27:75

    Google Scholar 

  3. Terada T, Yamamoto R (1935) Proc Imper Acad Tokyo 11:214

    CAS  Google Scholar 

  4. Ball P (1999) The self-made tapestry formation in nature. Oxford Univ Press, Oxford

    Google Scholar 

  5. Fischer BJ (2002) Langmuir 18:60

    Article  CAS  Google Scholar 

  6. Okubo T, Kimura H, Kimura T, Hayakawa F, Shibata T, Kimura K (2005) Colloid Polymer Sci 283:1

    Google Scholar 

  7. Okubo T (2006) Colloid Polymer Sci 285:225

    Article  CAS  Google Scholar 

  8. Okubo T (2006) Colloid Polymer Sci 284:1395

    Article  CAS  Google Scholar 

  9. Okubo T (2006) Colloid Polymer Sci 284:1191

    Article  CAS  Google Scholar 

  10. Okubo T (2006) Colloid Polymer Sci 285:331

    Article  CAS  Google Scholar 

  11. Okubo T, Okamoto J, Tsuchida A (2007) Colloid Polymer Sci 285:967

    Article  CAS  Google Scholar 

  12. Okubo T (2007) Colloid Polymer Sci 285:1495

    Article  CAS  Google Scholar 

  13. Vanderhoff JW, Bladford EB, Carrington WK (1973) J Polymer Sci Symp 41:155

    Article  Google Scholar 

  14. Nicolis G, Prigogine I (1977) Self-organization in non-equilibrium systems. Wiley, New York

    Google Scholar 

  15. Cross MC, Hohenberg PC (1993) Rev Modern Phys 65:851

    Article  CAS  Google Scholar 

  16. Adachi E, Dimitrov AS, Nagayama K (1995) Langmuir 11:1057

    Article  CAS  Google Scholar 

  17. Ohara PC, Heath JR, Gelbart WM (1998) Langmuir 14:3418

    Article  CAS  Google Scholar 

  18. Uno K, Hayashi K, Hayashi T, Ito K, Kitano H (1998) Colloid Polymer Sci 276:810

    Article  CAS  Google Scholar 

  19. Gelbart WM, Sear RP, Heath JR, Chang S (1999) Faraday Discuss Chem Soc 112:299

    Article  CAS  Google Scholar 

  20. van Duffel B, Schoonheydt RA, Grim CPM, De Schryver FC (1999) Langmuir 15:957

    Article  CAS  Google Scholar 

  21. Maenosono S, Dushkin CD, Saita S, Yamaguchi Y (1999) Langmuir 15:957

    Article  CAS  Google Scholar 

  22. Brock SL, Sanabria M, Suib SL, Urban V, Thiyagarajan P, Potter DI (1999) J Phys Chem 103:7416

    CAS  Google Scholar 

  23. Nikoobakht B, Wang ZL, El-Sayed MA (2000) J Phys Chem 104:8635

    CAS  Google Scholar 

  24. Ge G, Brus L (2000) J Phys Chem 104:9573

    CAS  Google Scholar 

  25. Chen KM, Jiang X, Kimerling LC, Hammond PT (2000) Langmuir 16:7825

    Article  CAS  Google Scholar 

  26. Lin XM, Jaenger HM, Sorensen CM, Klabunde KJ (2001) J Phys Chem 105:3353

    CAS  Google Scholar 

  27. Kokkoli E, Zukoski CF (2001) Langmuir 17:369

    Article  CAS  Google Scholar 

  28. Ung T, Liz-Marzan LM, Mulvaney P (2001) J Phys Chem 105:3441

    CAS  Google Scholar 

  29. Haw MD, Gilli M, Poon WCK (2002) Langmuir 18:1626

    Article  CAS  Google Scholar 

  30. Narita T, Beauvais C, Hebrand P, Lequeux F (2004) Eur Phys J E 14:287

    Article  CAS  Google Scholar 

  31. Tirumkudulu MS, Russel WB (2005) Langmuir 21:4938

    Article  CAS  Google Scholar 

  32. Shimomura M, Sawadaishi T (2001) Curr Opinion Colloid Interf Sci 6:11

    Article  CAS  Google Scholar 

  33. Okubo T, Okuda S, Kimura H (2002) Colloid Polymer Sci 280:454

    Article  CAS  Google Scholar 

  34. Okubo T, Kimura K, Kimura H (2002) Colloid Polymer Sci 280:1001

    Article  CAS  Google Scholar 

  35. Okubo T, Kanayama S, Ogawa H, Hibino M, Kimura K (2004) Colloid Polymer Sci 282:230

    Article  CAS  Google Scholar 

  36. Okubo T, Kanayama S, Kimura K (2004) Colloid Polymer Sci 282:486

    Article  CAS  Google Scholar 

  37. Okubo T, Yamada T, Kimura K, Tsuchida A (2005) Colloid Polymer Sci 283:1007

    Article  CAS  Google Scholar 

  38. Yamaguchi T, Kimura K, Tsuchida A, Okubo T, Matsumoto M (2005) Colloid Polymer Sci 283:1123

    Article  CAS  Google Scholar 

  39. Kimura K, Kanayama S, Tsuchida A, Okubo T (2005) Colloid Polymer Sci 283:898

    Article  CAS  Google Scholar 

  40. Okubo T, Shinoda C, Kimura K, Tsuchida A (2005) Langmuir 21:9889

    Article  CAS  Google Scholar 

  41. Okubo T, Yamada T, Kimura K, Tsuchida A (2006) Colloid Polymer Sci 284:396

    Article  CAS  Google Scholar 

  42. Okubo T, Itoh E, Tsuchida A, Kokufuta E (2006) Colloid Polymer Sci 285:339

    Article  CAS  Google Scholar 

  43. Okubo T, Nozawa M, Tsuchida A (2007) Colloid Polymer Sci 285:827

    Article  CAS  Google Scholar 

  44. Okubo T, Kimura K, Tsuchida A (2007) Colloids Surfaces 56:201

    Article  CAS  Google Scholar 

  45. Okubo T, Onoshima D, Tsuchida A (2007) Colloid Polymer Sci 285:999

    Article  CAS  Google Scholar 

  46. Okubo T, Nakagawa N, Tsuchida A (2007) Colloid Polymer Sci 285:1247

    Article  CAS  Google Scholar 

  47. Okubo T, Yokota N, Tsuchida A (2007) Colloid Polymer Sci 285:1257

    Article  CAS  Google Scholar 

  48. Okubo T, Kimura K, Tsuchida A, Colloid Polymer Sci., in press. (DOI 10.1007/s00396-007-1778-6)

  49. Okubo T, Kimura K, Tsuchida A, Colloid Polymer Sci., in press. (DOI 10.1007/s00396-007-1808-4), Regulated T & H

  50. Erkseliusa S, Wadso L, Karlsson O (2007) Colloid Polymer Sci 285:1707

    Article  CAS  Google Scholar 

  51. Okubo T (1986) J Chem Soc Faraday Trans 1 82:3175

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports from the Ministry of Education, Culture, Sports, Science and Technology, Japan and Japan Society for the Promotion of Science are greatly acknowledged for Grants-in-Aid for Exploratory Research (17655046) and Scientific Research (B) (18350057 and 19350110), respectively. Catalysts and Chemicals Co. is thanked deeply for his providing the colloidal silica sphere samples used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuneo Okubo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okubo, T., Okamoto, J. & Tsuchida, A. Sedimentation and drying dissipative patterns of ternary mixtures of colloidal silica spheres having different sizes. Colloid Polym Sci 286, 941–949 (2008). https://doi.org/10.1007/s00396-008-1852-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-008-1852-8

Keywords

Navigation