Skip to main content
Log in

Stimulated aggregation, rotation, and deformation of magnetite-filled microcapsules in external magnetic fields

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Microcapsules are nowadays applied in a wide range of products including food, pharmaceuticals, and cosmetic formulations. Because of their pronounced viscoelastic properties, polymer microcapsules are able to undergo mechanical deformations when they are stimulated by external signals. The elongation of capsule membranes, up to bursting processes, is important for the controlled release of active ingredients under well-defined conditions. Their application as quick and reliable control release systems affords a detailed knowledge of their rheological and mechanical properties. The aims of our work were to prepare new types of magnetic switchable microcapsules and to investigate their deformation behavior in externally imposed magnetic fields. The magnetic sensitivity was achieved by encapsulating magnetic magnetite (Fe3O4) particles within a polyorganosiloxane capsule. We investigated the dynamic response of those capsule suspensions and single capsules to external magnetic forces where aggregation processes, rotational movements, and field-induced deformations in static or rotating fields were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Arshady R (1999) Microspheres and liposomes. Citus, London

    Google Scholar 

  2. Arshady R, Kono K (2006) Smart nanoparticles in nanomedicine. Kentus, London

    Google Scholar 

  3. Benton BF, Gardner DL (1983) Microcapsules: innovative, versatile product delivery, Columbus. Battelle Memorial Institute, Ohio

    Google Scholar 

  4. Chang TMS (1964) Science 149(364):524

    Article  Google Scholar 

  5. Kugelmass IN, Charles CT (eds) (1972) Artificial cells, Springfield Ill: American Lecture Science

  6. Franjione J, Vasishtha (1996) The art and science of microencapsulation, Technology Today

  7. Kondo A, Van Valkenburg JW (1979) Microcapsule processing and technology. Marcel Dekker, New York

    Google Scholar 

  8. Kono K, Arshady R (2006) Smart nano and microparticles. Kentus, London

    Google Scholar 

  9. Madan PL (1978) Drug Cosmet Ind 122(6):47

    Google Scholar 

  10. Sliwka W (1975) Angew Chem Int Ed 14(8):539

    Article  CAS  Google Scholar 

  11. Yao SJ, Cho MG (1998) Chin J Chem Eng 6(2):116

    CAS  Google Scholar 

  12. Pieper G, Rehage H, Barthès-Biesel D (1998) J Colloid Interface Sci 202:293

    Article  CAS  Google Scholar 

  13. Dähne L, Peyratout CS (2004) Angew Chem 116:3850

    Article  Google Scholar 

  14. Walter A, Rehage H, Leonhard H (2001) Colloids Surf, A Physicochem Eng Asp 183–185:123

    Article  Google Scholar 

  15. Rehage H, Husmann M, Walter A (2002) Rheol Acta 41:292

    Article  CAS  Google Scholar 

  16. Hirzinger G (1996) IEEE/ASME Trans Mechatron 1(2):149

    Article  Google Scholar 

  17. Noritsugu T, Tanaka T (1997) IEEE/ASME Trans Mechatron 2(4):259

    Article  Google Scholar 

  18. Barthès-Biesel D, Sgaier H (1985) J Fluid Mech 160:119

    Article  Google Scholar 

  19. Walter A, Rehage H, Leonhard H (2000) Colloid Polym Sci 278:169

    Article  CAS  Google Scholar 

  20. Mathiowitz E, Cohen MD (1989) J Membr Sci 40:27

    Article  CAS  Google Scholar 

  21. Janssen LJJM, Nijenhuis K (1993) J Membr Sci 79:11

    Article  CAS  Google Scholar 

  22. Husmann M, Rehage H, Dhenin E, Barthès-Biesel D (2005) J Colloid Interface Sci 282:109

    Article  CAS  Google Scholar 

  23. Fowler CE, Khushalani D, Mann S (2001) J Mater Chem 11:1969

    Article  Google Scholar 

  24. Wang H, Chen P, Zheng X (2004) J Mater Chem 14:1648

    Article  CAS  Google Scholar 

  25. Fujiwara M, Shiokawa K, Tanaka Y, Nakahara Y (2004) Chem Mater 16:5420

    Article  CAS  Google Scholar 

  26. Blandino A, Macias M, Cantero D (1999) J Biosci Bioeng 88(6):686

    Article  CAS  Google Scholar 

  27. Shen F, Li AAH, Cornelius RM, Cirone P, Childs RF, Brash JL, Chang PL (2005) J Biomed Mater Res Part B Appl Biomater 75B(2):425

    Article  CAS  Google Scholar 

  28. Dai C, Wang B, Zhao H (2005) Colloids Surf B: Biointerfaces 41:117

    Article  CAS  Google Scholar 

  29. Sukhorukov GB, Fery A, Brumen M, Möhwald H (2004) Phys Chem Chem Phys 6:4078

    Article  CAS  Google Scholar 

  30. Schneider G, Decher G (2004) Nano Lett 4(10):1833

    Article  CAS  Google Scholar 

  31. Caruso F, Caruso RA, Möhwald H (1998) Science 282:1111

    Article  CAS  Google Scholar 

  32. Decher G (1997) Science 277:1232

    Article  CAS  Google Scholar 

  33. Dähne L (2003) In: Decher G, Schlenhoff JB (eds) Thin multilayer films. 1st edn. Wiley-VCH, Weinheim

    Google Scholar 

  34. Husmann M, Achenbach B, Rehage H (1999) In: Stokke BT, Elgsaeter A (eds) The Wiley polymer network review series. Wiley Chichester, Weinheim

    Google Scholar 

  35. Ulman A (1990) Adv Mater 2:573

    Article  CAS  Google Scholar 

  36. Rehage H, Achenbach B, Klaerner FG (2002) Langmuir 18:7115

    Article  CAS  Google Scholar 

  37. Lindén M, Slotte JP, Rosenholm JB (1996) Langmuir 12:4449

    Article  Google Scholar 

  38. Bergeron V, Langevin D (1996) Macromolecules 29:306

    Article  CAS  Google Scholar 

  39. Mark JE (2004) Acc Chem Res 37:946

    Article  CAS  Google Scholar 

  40. Odenbach S (2005) Nachr Chem Tech Lab 53:297

    Google Scholar 

  41. Rosensweig RE (1997) Ferrohydrodynamics. Cambridge University Press, Cambridge

    Google Scholar 

  42. Jones TB (1995) Electromechanics of particles. Cambridge University Press, Cambridge

    Google Scholar 

  43. Rwei SP, Lee HY, Yoo SD, Wang LY, Lin JG (2005) Colloid Polym Sci 283:1253

    Article  CAS  Google Scholar 

  44. Odenbach S (2001) Phys Unserer Zeit 32(3):122

    Article  CAS  Google Scholar 

  45. Hähndel T, Nethe A, Stahlmann HD (2000) Forum der Forschung 10, BTU Cottbus, Eigenverlag: 53

  46. Husmann M (2001) Dissertation. University of Essen, Germany

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Degen.

Electronic supplementary material

Below is the image is a link to a high resolution version.

Fig. S1

(GIF 113 kb)

High-resolution image (TIFF 4.19 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Degen, P., Peschel, S. & Rehage, H. Stimulated aggregation, rotation, and deformation of magnetite-filled microcapsules in external magnetic fields. Colloid Polym Sci 286, 865–871 (2008). https://doi.org/10.1007/s00396-008-1841-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-008-1841-y

Keywords

Navigation