Skip to main content
Log in

Photoinduced redox reactions between colloidal manganese dioxide and some organic compounds of environmental importance

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Numerous organic compounds of environmental importance, i.e., phenol, citric, tartaric, and oxalic acids, proved to promote or accelerate reductive dissolution of colloidal manganese dioxide upon irradiation. This is accounted for the formation of surface-located charge-transfer complexes between the MnO2 particulates and the organic electron donors. From the dependences of the rate of the photoassisted and thermal dissolution on the concentration of the organic compounds, the equilibrium constants for the formation of these complexes have been determined in the case of phenol, resorcinol, citrate, and tartaric acid. The quantum yields for these photoinduced reactions (at λ ir = 365 nm), however, do not show any correlation with the values of the corresponding equilibrium constants, although adsorption is prerequisite for the efficient reductive dissolution of MnO2. The changes in pH markedly affect the rate of this process, indicating that protonation of both the electron donors and the surface of the MnO2 particulates may play significant roles in these systems. The results of experiments carried out in manganese dioxide excess suggest that total mineralization of organic electron donors is strongly hindered by the disadvantageous adsorption properties of the primary redox products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Papp S, Kümmel R (1988) Umweltchemie. Deutscher Verlag für Grundstoffchemie, Leipzig

    Google Scholar 

  2. Glasby GP (1984) Oceanogr Mar Biol Annu Rev 22:169

    CAS  Google Scholar 

  3. Stumm W, Morgan JJ (1981) Aquatic chemistry: an introduction emphasizing chemical equilibria in natural waters. Wiley, New York

    Google Scholar 

  4. Tebo BM, Nealson KH, Emerson S, Jacobs L (1984) Limnol Oceanogr 29:1247

    Article  CAS  Google Scholar 

  5. Tebo BM, Emerson S (1985) Appl Environ Microbiol 50:1268

    CAS  Google Scholar 

  6. Sunda WG, Huntsman SA (1988) Deep-Sea Res 35:1297

    Article  CAS  Google Scholar 

  7. Sunda WG, Huntsman SA (1990) Limnol Oceanogr 35:325

    CAS  Google Scholar 

  8. Sunda WG, Huntsman SA, Harvey GR (1983) Nature 234:301

    Google Scholar 

  9. Stone AT, Morgan JJ (1984) Environ Sci Technol 18:450

    Article  CAS  Google Scholar 

  10. Khan Z, Kumar P, Kabir-ud-Din (2004) Colloids Surf A Physicochem Eng Asp 248:25

    Article  CAS  Google Scholar 

  11. Andrabi SMZ, Khan Z (2005) Colloid Polym Sci 284:36

    Article  CAS  Google Scholar 

  12. Wang Y, Stone AT (2006) Geochim Cosmochim Acta 70:4463

    Article  CAS  Google Scholar 

  13. Wang Y, Stone AT (2006) Geochim Cosmochim Acta 70:4477

    Article  CAS  Google Scholar 

  14. Baker WE (1973) Geochim Cosmochim Acta 37:269

    Article  CAS  Google Scholar 

  15. Guy RE, Chakrabarti CL (1976) Can J Chem 54:2600

    Article  CAS  Google Scholar 

  16. Sunda WG, Kieber DJ (1994) Nature 367:62

    Article  CAS  Google Scholar 

  17. Ulrich HJ, Stone AT (1989) Environ Sci Technol 23:421

    Article  CAS  Google Scholar 

  18. Xyla AG, Sulzberger B, Luther GW III, Hering JG, Van Cappellen P, Stumm W (1992) Langmuir 8:95

    Article  CAS  Google Scholar 

  19. Horváth O, Strohmayer K (1998) J Photochem Photobiol A Chem 116:69

    Article  Google Scholar 

  20. Sunda WG, Huntsman SA (1983) Limnol Oceanogr 28:924

    CAS  Google Scholar 

  21. Waite TD, Szymczak R (1994) In: Helz GR, Zepp RG, Crosby DG (eds) Aquatic and surface photochemistry. Lewis, Boca Raton, p 39

    Google Scholar 

  22. Sunda WG, Huntsman SA (1994) Mar Chem 46:133

    Article  CAS  Google Scholar 

  23. Matsunaga K, Ohyama T, Kuma K, Kudo I, Suzuki Y (1995) Water Res 29:757

    Article  CAS  Google Scholar 

  24. Lume-Pereira C, Baral S, Henglein A, Janata E (1985) J Phys Chem 89:5572

    Article  Google Scholar 

  25. Waite TD, Morel FMM (1984) J Colloid Interface Sci 1:102

    Google Scholar 

  26. Waite TD, Wrigley IC, Szymczak R (1988) Environ Sci Technol 22:778

    Article  CAS  Google Scholar 

  27. Dzombak DA, Morel FMM (1990) Surface complexation modeling. Wiley, New York

    Google Scholar 

  28. Blesa MA, Morando PJ, Regazzoni AE (1994) Chemical dissolution of metal oxides. CRC, Boca Raton

    Google Scholar 

  29. Sulzberger B, Laubscher H, Karametaxas G (1994) In: Helz GR, Zepp RG, Crosby DG (eds) Aquatic and surface photochemistry. Lewis, Boca Raton, p 53

    Google Scholar 

  30. Rodenas LAG, Iglesias AM, Weisz AD, Morando PJ, Blesa MA (1997) Inorg Chem 36:6423

    Article  Google Scholar 

  31. Sulzberger B, Suter D, Siffert C, Banwart S, Stumm W (1989) Mar Chem 28:127

    Article  CAS  Google Scholar 

  32. Stumm W, Sulzberger B, Sinniger J (1990) Croat Chem Acta 63:277

    CAS  Google Scholar 

  33. Borer PM, Sulzberger B, Reichard P, Kraemer SM (2005) Mar Chem 93:179

    Article  CAS  Google Scholar 

  34. Perrin DD (1979) IUPAC Chemical Data Series—no. 22: stability constants of metal–ion complexes, part B: organic ligands. Pergamon, Oxford

    Google Scholar 

  35. McKenzie RM (1981) Aust J Soil Res 19:41

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Industrial Foundation for the Engineers’ Training in Veszprém. OH is especially grateful to Professor Janos H. Fendler for the invaluable help, in both professional and private respects, giving considerable guidance in the modern colloid chemistry and inspiration for the research in this field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ottó Horváth.

Additional information

Dedicated to Professor Janos H. Fendler on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horváth, O., Bakota, G.Z., Marosfi, J. et al. Photoinduced redox reactions between colloidal manganese dioxide and some organic compounds of environmental importance. Colloid Polym Sci 286, 51–57 (2008). https://doi.org/10.1007/s00396-007-1684-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-007-1684-y

Keywords

Navigation