Skip to main content
Log in

J-complexes of retinol formed within the nanoparticles prepared from microemulsions

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

An Erratum to this article was published on 12 August 2008

Abstract

Retinol nanoparticles have been obtained by direct precipitation of retinol in the inner water cores of AOT/heptane/water microemulsions. The retinol dissolved in chloroform was injected into the microemulsion. The diameter of the so-obtained nanoparticles was measured using transmission electron microscope pictures where the revelation was made thanks to adsorbed iodine on the nanoparticles. The size is ca 6.0 nm, and it is not dependent either on the size of the water droplets or the concentration of the retinol molecules. This phenomenon is explained by the thermodynamic stabilization of the nanoparticles at a certain size. UV-visible spectra of the nanoparticles show a new band the maximum of which has a bathochromic shift with respect to the absorption band of the retinol monomers. If the bathochromic shift is plotted as a function of the line width, a linear correlation is obtained, the line width is decreasing with increasing shift. This behavior is interpreted as being due to an excitonic transition of a J-complex. Quantum chemical calculations have been carried out to confirm the presence of J-complexes. Taking into account the various possible geometries, the results confirm the presence of J-complexes composed of three head-to-tail molecules on the average.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Fendler JH (ed) (1998) Nanoparticles and nanostructured films: preparation, characterization and applications. Wiley-VCH, Weinheim

    Google Scholar 

  2. Destrée C, B.Nagy J (2006) Adv Colloid Interface Sci 123–126:353

    Article  CAS  Google Scholar 

  3. Ozin GA, Kuperman A, Stein A (1989) Angew Chem Int Ed Engl Suppl 28:359

    Article  Google Scholar 

  4. Belloni J, Mostafavi M, Marignier J-L, Amberad J (1991) J Imaging Sci Technol 35:68

    CAS  Google Scholar 

  5. Henglein A (1993) J Phys Chem 97:5457

    Article  CAS  Google Scholar 

  6. Kobayashi T (ed) (1996) J-Aggregates. World Scientific, Singapore

    Google Scholar 

  7. Jeunieau L, B.Nagy J (1998) Appl Organomet Chem 12:341

    Article  CAS  Google Scholar 

  8. Jeunieau L, B.Nagy J (1999) Nanostruct Mater 12:979

    Article  Google Scholar 

  9. Jeunieau L, B.Nagy J (1999) Colloids Surf A Physicochem Eng Asp 151:419

    Article  CAS  Google Scholar 

  10. Jeunieau L, Verbourwe W, Els Rousseau, Van der Auweraer M, B.Nagy J (2000) Langmuir 16:1602

    Article  CAS  Google Scholar 

  11. Jeunieau L, Alin V, B.Nagy J (2000) Langmuir 16:597

    Article  CAS  Google Scholar 

  12. Jeunieau L, Debuigne F, B.Nagy J (2001) Reaction and synthesis in surfactant systems. In: Texter J (ed) Surfactant science series, vol 100. Marcel Dekker, New York, p 609

    Google Scholar 

  13. Zerner MC (1991) In: Lipkowitz KB, Boyd DB (eds) Reviews of computational chemistry, vol 1. VCH, New York, 313

    Chapter  Google Scholar 

  14. Martin CH, Zerner MC (1999) In: Solomon EI, Lever ABP (eds) Inorganic electronic structure and spectroscopy, vol 1. Wiley, New York, p 555

    Google Scholar 

  15. Guillaume M, Botek E, Champagne B, Castet F, Ducasse L (2002) Int J Quantum Chem 90:1378

    Article  CAS  Google Scholar 

  16. Guillaume M, Botek E, Champagne B, Castet F, Ducasse L (2004) J Chem Phys 121:7390

    Article  CAS  Google Scholar 

  17. Eastoe J, Robinson BH, Visser AJWG, Steatler DC (1987) Faraday Trans 87:1899

    Article  Google Scholar 

  18. Landolt-Börnstein (1985) New series, vol 106. Springer, Berlin Heidelberg New York, p 166

    Google Scholar 

  19. Fletcher PDI, Howe AM, Robinson BH (1987) J Chem Soc Faraday Trans I 83:985

    Article  CAS  Google Scholar 

  20. Atik SS, Thomas JK (1981) Chem Phys Lett 79:351

    Article  CAS  Google Scholar 

  21. LaMer VK, Dinegarn RH (1950) J Am Chem Soc 72:4847

    Article  CAS  Google Scholar 

  22. Sugimoto T (1987) Adv Colloid Interface Sci 28:65

    Article  CAS  Google Scholar 

  23. B.Nagy J (1999) In: Kumar P, Mittal KL (eds) Handbook of microemulsion science and technology. Marcel Dekker, New York, p 499

    Google Scholar 

  24. Lerot L, Legrand F, De Bruycker P (1991) J Mater Sci 26:2353

    Article  CAS  Google Scholar 

  25. Destrée C, Ghijsen J, B.Nagy J (2007) Langmuir 23:1965

    Article  CAS  Google Scholar 

  26. Pope M, Swenberg CE (1999) Electronic processes in organic crystals and polymers. Oxford University Press, Oxford

    Google Scholar 

  27. Sherer POJ (1996) In: Kobayashi T (ed) J-Aggregates. World Scientific, Singapore, p 95

    Google Scholar 

  28. Moll J (1995) Forschungsbericht 214: exciton-dynamics in J-aggregates of an organic dye. Bundesanstaft für Materialforschung und-prüfung, Berlin

  29. Knapp EW (1984) Chem Phys 85:73

    CAS  Google Scholar 

  30. Tian Y, Guerin F, Guldi D, Fendler JH (1996) Nanoparticles in solids and solutions. In: Fendler JH, Dekany I (eds) NATO ASI Series, 3. High technology, vol 18. Kluwer, Dordrecht, p 569

    Google Scholar 

  31. Becker RS, Berger S, Dalling DK, Grant DM, Pugmire RJ (1974) J Am Chem Soc 96:7008

    Article  CAS  Google Scholar 

  32. Debuigne F (2002) PhD Thesis, University of Namur

  33. Jain TK, Varshney M, Maitra A (1989) J Phys Chem 93:7409

    Article  CAS  Google Scholar 

  34. Hauser H, Gaering G, Pande A, Luisi PL (1989) J Phys Chem 93:7869

    Article  CAS  Google Scholar 

  35. Wong M, Thomas JK, Novak T (1977) J Am Chem Soc 99:4730

    Article  CAS  Google Scholar 

Download references

Acknowledgment

C. Destrée gratefully acknowledges financial support from FRIA, Belgium. B. Champagne thanks the Belgian National Fund for Scientific Research for his Research Director position. The calculations have been performed on the Interuniversity Scientific Computing Facility (ISCF), installed at the Facultés Universitaires Notre-Dame de la Paix (Namur, Belgium), for which the authors gratefully acknowledge the financial support of the FNRS-FRFC and the “Loterie Nationale” for the convention no. 2.4578.02 and of the FUNDP. J. Ghijsen thanks the Belgian National Fund for Scientific Research for his Research Associate position.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. B.Nagy.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00396-008-1900-4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Destrée, C., George, S., Champagne, B. et al. J-complexes of retinol formed within the nanoparticles prepared from microemulsions. Colloid Polym Sci 286, 15–30 (2008). https://doi.org/10.1007/s00396-007-1679-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-007-1679-8

Keywords

Navigation