Skip to main content
Log in

Capillary theory of free fluid surfaces

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The traditional formulation of capillary theory does not explicitly contain the general dimension equation that is valid also for its own scalar variables. Its introduction enables the experimentally determinable physical properties to be interpreted. These properties individually characterize the bulk phases generating the layers that enter into the capillary interaction. Not only empirically known approximate relationships, such as the van der Waals and Walden equations, the Watson’s formula, and the Cailletet–Mathias rule, can be derived through them, but also new findings can be made. By extending the formulation with a new type of parameters, the relationships of temperature, density-dependence, etc. may be directly generated. The individual concept, which differs from the traditional theory in only one extra power law, is compatible with other capillarity methods based on material structure and outperforms the heuristic power of the traditional theory in terms of operability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gibbs JW (1928) The collected works, vol. I. Longmans, New York

    Google Scholar 

  2. Defay R, Prigogine I, Bellemans A (1966) Surface tension and adsorption. Longmans, New York

    Google Scholar 

  3. Rusanov AI (1978) Phasengleichgewichte und Grenzflächenerscheinungen. Akademie-Verlag, Berlin

    Google Scholar 

  4. Perschke WK (1929) Z f Elektrochemie 35(13):17

    Google Scholar 

  5. Guggenheim EA (1965) Proc Phys Soc 85:811

    Article  CAS  Google Scholar 

  6. Buckingham E (1914) Phys Rev 4(2):345

    Article  Google Scholar 

  7. Fues E (1937) Z Phys 107:662

    Article  Google Scholar 

  8. Bridgman PW (1978) Dimensional analysis. AMS Press, New York

    Google Scholar 

  9. Wallot J (1953) Grössengleichungen, Einheiten und Dimensionen. J A Barth Verlagsbuchhandlung, Leipzig

    Google Scholar 

  10. Szücs E (1980) Similitude and modelling (Fundamental studies in engineering 2). Elsevier, Amsterdam

    Google Scholar 

  11. Fowkes FM (1971) Chemistry and physics of interfaces. II American Chemical Society Publication, Washington

    Google Scholar 

  12. Pászli I, László K (2004) Colloid Polym Sci 282:243

    Article  CAS  Google Scholar 

  13. Cailletet L, Mathias E (1886) Compt Rend 102:1202

    Google Scholar 

  14. Wolf KL (1957) Physik und Chemie der Grenzflächen (Bd. I.). Springer, Berlin Heidelberg New York

    Google Scholar 

  15. van der Waals JD (1894) Z Phys Chem 13:715

    Google Scholar 

  16. Lorenz R, Herz W (1922) Z Anorg Chem 120:320

    CAS  Google Scholar 

  17. Guldberg CM (1890) Z Phys Chem 5:374

    Google Scholar 

  18. Trouton F (1884) Phil Mag 18:54

    Google Scholar 

  19. Walden P (1909) Z Phys Chem 65:257

    CAS  Google Scholar 

  20. Carr AR, Wolczynski T (1934) J Am Chem Soc 56:2541

    Article  CAS  Google Scholar 

  21. Partington JR (1950) An advanced treatise on physical chemistry, vol. II. Longmans, New York

    Google Scholar 

  22. McLeod DB (1923) Trans Faraday Soc 19:38

    Article  Google Scholar 

  23. Brock JR, Bird RB (1955) AIChE J 1:174

    Article  CAS  Google Scholar 

  24. Riedel L (1952) Chemie-Ing-Techn 24:353

    Article  CAS  Google Scholar 

  25. Jasper JJ (1972) J Phys Chem Ref Data 1(4):841–1010

    Article  CAS  Google Scholar 

  26. CRC (1982) Handbook of chemistry and physics, 63rd edn. Boca Raton

  27. Kobe KA, Lynn RE (1953) Chem Rev 52:117

    Article  CAS  Google Scholar 

  28. Verschaffelt R (1926) Bull Acad Roy Belg 12:566

    CAS  Google Scholar 

  29. Ferguson P (1916) Phil Mag 31:37

    CAS  Google Scholar 

  30. Ferguson P (1923) Trans Faraday Soc 19:408

    Google Scholar 

  31. Organick EI, Studhalter WR (1948) Chem Eng Prog 44:847

    CAS  Google Scholar 

  32. Watson KM (1943) Ind Eng Chem 35:398

    Article  CAS  Google Scholar 

  33. Eyring H (1936) J Chem Phys 4:283

    Article  CAS  Google Scholar 

  34. Young S (1910) Sci Proc R Dublin Soc 12:374

    Google Scholar 

Download references

Acknowledgement

KL thanks Erik Geissler for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krisztina László.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pászli, I., László, K. Capillary theory of free fluid surfaces. Colloid Polym Sci 285, 1181–1191 (2007). https://doi.org/10.1007/s00396-007-1671-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-007-1671-3

Keywords

Navigation