Skip to main content
Log in

Effects of stretching on microstructures of polymer-immobilized non-close-packed colloidal crystalline array

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Non-close-packed silica colloidal crystalline array was immobilized by polymer, and effects of stretching on the change of the optical properties and microstructure of the colloidal crystalline arrays have been demonstrated. The immobilization was a two-step polymerization process: the first step was with hydrophilic polyethylene glycol acrylate (PEGA) polymer gel, and the second step was with 2-hydroxyethyl acrylate polymer matrix. The structure of the three-dimensional array was maintained during the immobilizing process with lock in periodic order. The peak wavelength of Bragg diffraction of the polymer-immobilized colloidal crystalline array shifted to shorter wavelength with stretching. The peak shift was caused by the compression of the polymer proportional to the stretching ratio, and the compression was homogeneous throughout the polymer-immobilized colloidal crystalline arrays. These results show that by using polymer-immobilized non-close-packed colloidal crystalline array, mechanically tunable photonic crystals can be realized, and they open the possibility of tuning the microstructure of colloidal crystalline array for photonic crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. A special issue on “Photonic crystals” (2001) Adv Mater 13(6)

  2. A special issue on “Materials science aspects of photonic crystals” (2001) MRS Bull 26:608

  3. Xia Y, Gates B, Yin Y, Lu Y (2000) Adv Mater 12:693

    Article  CAS  Google Scholar 

  4. van Blaaderen A, Ruel R, Wiltzius P (1997) Nature 385:321

    Article  Google Scholar 

  5. Davis KE, Russel WB, Glantschnig WJ (1989) Science 245:507

    Article  CAS  Google Scholar 

  6. Denkov ND, Velev OD, Kralchevsky PA, Ivanov IB, Yoshimura H, Nagayama K (1993) Nature 361:26

    Article  Google Scholar 

  7. Miguez H, Meseguer F, Lopez C, Mifsud A, Moya JS, Vazquez L (1997) Langmuir 13:6009

    Article  CAS  Google Scholar 

  8. Park SH, Xia Y (1999) Langmuir 15:266

    Article  CAS  Google Scholar 

  9. Im SH, Lim YT, Suh DJ, Park OO (2002) Adv Mater 14:1367

    Article  CAS  Google Scholar 

  10. Wong S, Kitaev V, Ozin GA (2003) J Am Chem Soc 125:15589

    Article  CAS  Google Scholar 

  11. Jiang P, Bertone JF, Hwang KS, Colvin VL (1999) Chem Mater 11:2132

    Article  CAS  Google Scholar 

  12. Krieger IM, O’Neill FM (1968) J Am Chem Soc 90:3114

    Article  CAS  Google Scholar 

  13. Hiltner PA, Krieger IM (1969) J Phys Chem 73:2386

    Article  CAS  Google Scholar 

  14. Clark NA, Hund AJ, Ackerson BJ (1979) Nature 281:57

    Article  CAS  Google Scholar 

  15. Goodwin JW, Ottewill RH, Parentich A (1980) J Phys Chem 84:1580

    Article  CAS  Google Scholar 

  16. Carlson RJ, Asher SA (1984) Appl Spectrosc 38:297

    Article  CAS  Google Scholar 

  17. Pusey PN, van Megen W (1986) Nature 320:340

    Article  CAS  Google Scholar 

  18. Rundquist PA, Photinos P, Jagannathan S, Asher SA (1986) J Chem Phys 91:4932

    Article  Google Scholar 

  19. Weissman JM, Sunkara HB, Tse AS, Asher SA (1996) Science 74:959

    Article  Google Scholar 

  20. Holtz JH, Asher SA (1997) Nature 389:829

    Article  CAS  Google Scholar 

  21. Asher SA, Holtz JH, Wu Z (1994) J Am Chem Soc 116:4997

    Article  CAS  Google Scholar 

  22. Foulger SH, Jiang P, Ying Y, Lattam AC, Smith DW Jr, Ballato J (2001) Adv Mater 13:1898

    Article  CAS  Google Scholar 

  23. Foulger SH, Jiang P, Lattam AC, Smith DW Jr, Ballato J (2001) Langmuir 17:6023

    Article  CAS  Google Scholar 

  24. Foulger SH, Jiang P, Lattam AC, Smith DW Jr, Ballato J, Dausch DE, Grego S, Stoner BR (2003) Adv Mater 15:685

    Article  CAS  Google Scholar 

  25. Jiang P, Smith DW Jr, Ballato J, Foulger SH (2005) Adv Mater 17:179

    Article  CAS  Google Scholar 

  26. Jethmalani JM, Ford WT (1996) Chem Mater 8:2138

    Article  CAS  Google Scholar 

  27. Jethmalani JM, Sunkara HB, Ford WT, Willoughby SL, Ackerson BJ (1997) Langmuir 13:2633

    Article  CAS  Google Scholar 

  28. Jethmalani JM, Ford WT, Beaucage G (1997) Langmuir 13:3338

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We thank Takuya Mitsuoka for the help with the SPM observations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Nakamura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamura, H., Ishii, M. Effects of stretching on microstructures of polymer-immobilized non-close-packed colloidal crystalline array. Colloid Polym Sci 285, 693–697 (2007). https://doi.org/10.1007/s00396-006-1619-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-006-1619-z

Keywords

Navigation