Skip to main content
Log in

Concentrated reverse micelles in a random graft block copolymer system: structure and in-situ synthesis of silver nanoparticles

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The structure and rheological properties of a poly(dimethylsiloxane)-graft-poly(oxyethylene) copolymer at high concentrations in block-selective solvents were studied by small-angle X-ray scattering (SAXS) and rheometry. Analysis of SAXS data indicates that quasispherical, reverse micellar aggregates (with no ordered packing) are present in concentrated solutions of the copolymer in nonpolar solvents, and that upon addition of water, the size of such aggregates increases due to the solubilization inside the micellar cores. The viscosity of concentrated polymer solutions increases exponentially as water is added, and finally, viscoelastic, gel-like behavior is found in the vicinity of the phase separation limit. It was found that small silver nanoparticles with an average diameter of ≈3 nm can be synthesized inside the copolymer aggregates without the need of a reducing agent; namely, particles embedded in a viscoelastic matrix are obtained. The synthesis seems to follow first-order kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Schmidt GLF (1973) In: Karsa DR (ed) Industrial applications of surfactants. Royal Society of Chemistry, London, p 24

    Google Scholar 

  2. He M, Hill RM, Lin Z, Scriven LE, Davis HT (1993) J Phys Chem 97:8820

    Article  CAS  Google Scholar 

  3. Hill RM, He M, Lin Z, Davis HT, Scriven LE (1993) Langmuir 9:2789

    Article  CAS  Google Scholar 

  4. Rodríguez C, Uddin Md H, Watanabe K, Furukawa H, Harashima A, Kunieda HJ (2002) Phys Chem B 106:22

    Article  Google Scholar 

  5. Uddin MH, Rodríguez C, López-Quintela MA, Tarrazo T, Solans C, Esquena J, Kunieda H (2003) Macromolecules 36:1261

    Article  CAS  Google Scholar 

  6. Soni SS, Sastry NV, Aswal VK, Goyal PSJ (2002) Phys Chem B 106:2606

    Article  CAS  Google Scholar 

  7. Lin Y, Alexandridis P (2002) J Phys Chem B 106:10845

    Article  CAS  Google Scholar 

  8. Wanatabe K, Kanei N, Kunieda H (2002) J Oleo Sci 51:771

    Google Scholar 

  9. Hill RM (1997) In: Robb ID (ed) Specialist surfactants. Blackie Academic and Professional, London

    Google Scholar 

  10. Gradzielski M, Hoffmann H, Robisch P, Ulbricht W (1990) Tenside Surf Deterg 27:366

    CAS  Google Scholar 

  11. Stuermer A, Thunig C, Hoffmann H, Gruening B (1994) Tenside Surf Deterg 31:90

    CAS  Google Scholar 

  12. Hill RM (1999) Silicone surfactants, surfactant sci series 86. Marcel Dekker, New York

    Google Scholar 

  13. Xu AW, Yu JC, Cai YP, Zhan HX, Zhang LZ (2002) Chem Commun 1614

  14. Michaut F, Hebraud P, Lafuma F, Perrin P (2003) Langmuir 19:10086

    Article  CAS  Google Scholar 

  15. Lopez-Quintela MA (2003) Curr Opin Colloid Interface Sci 8:137

    Article  CAS  Google Scholar 

  16. Lazzari M, Lopez-Quintela MA (2003) Adv Mater 15:1583

    Article  CAS  Google Scholar 

  17. Lazzari M, Rodríguez C, Rivas J, López-Quintela MA (2006) J Nanosci Nanotechnol 6:892

    Article  CAS  Google Scholar 

  18. Zhang R, Liu J, Han B, He J, Liu Z, Zhang J (2003) Langmuir 19:8611

    Article  CAS  Google Scholar 

  19. Sakai T, Alexandridis P (2006) Chem Mater 18:2577

    Article  CAS  Google Scholar 

  20. Lei Z, Fan Y (2006) Mater Lett 60:2256

    Article  CAS  Google Scholar 

  21. Kaito A, Tanigaki N, Kyotani H, Shimomura M (2001) Macromol Mater Eng 286:369

    Article  CAS  Google Scholar 

  22. Neugebauer D, Zhang Y, Pakula T, Matyjaszewski K (2005) Macromolecules 38:8687

    Article  CAS  Google Scholar 

  23. Lopez-Quintela MA, Akahane A, Rodriguez C, Kunieda H (2002) J Colloid Interface Sci 247:186

    Article  CAS  Google Scholar 

  24. Kikuchi A, Nose T (1996) Macromolecules 29:6770

    Article  CAS  Google Scholar 

  25. Meeker SP, Poon WCK, Pusey PN (1997) Phys Rev E 55:5718

    Article  CAS  Google Scholar 

  26. Goodwin JW, Ottewill RH (1991) J Chem Soc Faraday Trans 87:357

    Article  CAS  Google Scholar 

  27. Weiss A, Dingenouts N, Ballauff M, Senff H, Richtering W (1998) Langmuir 14:5083

    Article  CAS  Google Scholar 

  28. Doolittle AK, Doolittle DB (1957) J Appl Phys 28:901

    Article  CAS  Google Scholar 

  29. Marshall L, Zukoski CF (1990) J Phys Chem 94:1164

    Article  CAS  Google Scholar 

  30. Sollich P, Lequeux F, Hebraud P, Cates M (1997) Phys Rev Lett 78:2020

    Article  CAS  Google Scholar 

  31. Sollich P (1998) Phys Rev E 58:738

    Article  CAS  Google Scholar 

  32. Bonn D, Coussot P, Huynh HT, Bertrandand F, Debregeas G (2002) Europhys Lett 59:786

    Article  CAS  Google Scholar 

  33. Petit C, Lixon P, Pileni M-P (1993) J Phys Chem 97:12974

    Article  CAS  Google Scholar 

  34. Linnert T, Mulvaney P, Henglein A, Weller HJ (1990) J Am Chem Soc 112:4657

    Article  CAS  Google Scholar 

  35. Rodríguez-Sanchez ML, Rodríguez MJ, Blanco MC, Rivas J, López-Quintela MA (2005) J Phys Chem B 109:1183

    Article  Google Scholar 

  36. Barnickel P, Wokaun A (1990) Mol Phys 69:1

    Article  CAS  Google Scholar 

  37. Currie F, Andersson M, Holmberg K (2004) Langmuir 20:3835

    Article  CAS  Google Scholar 

  38. Andersson M, Pedersen JS, Palmqvist AEC (2005) Langmuir 21:11387

    Article  CAS  Google Scholar 

  39. Sakai T, Alexandridis P (2005) Langmuir 21:8019

    Article  CAS  Google Scholar 

  40. Hoppe CE, Lazzari M, Pardiñas-Blanco I, López-Quintela MA (2006) Langmuir 22:7027

    Article  CAS  Google Scholar 

  41. Liz-Marzán LM, Lado-Touriño I (1996) Langmuir 12:3585

    Article  Google Scholar 

Download references

Acknowledgment

The authors are grateful to Dr. Takaaki Sato (Waseda University, Japan) for useful discussions and suggestions on SAXS results, and to Dr. Dominique Scalarone (University of Torino, Italy), for providing data on size-exclusion chromatography.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Rodríguez-Abreu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supporting information (DOC 1.89 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez-Abreu, C., Lazzari, M., Varade, D. et al. Concentrated reverse micelles in a random graft block copolymer system: structure and in-situ synthesis of silver nanoparticles. Colloid Polym Sci 285, 673–680 (2007). https://doi.org/10.1007/s00396-006-1612-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-006-1612-6

Keywords

Navigation