Skip to main content
Log in

Toward microphase separation in epoxy systems containing PEO–PPO–PEO block copolymers by controlling cure conditions and molar ratios between blocks

Part 1. Cure kinetics

Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Nanostructuring of thermosetting systems using the concept of templating and taking advantage of the self-assembling capability of block copolymers is an exciting way for designing new materials for nanotechnological applications. In this first part of the work, reactive blends based on stoichiometric amounts of a diglycidylether of bisphenol-A epoxy resin and 4,4′-diaminodiphenylmethane cure agent modified with three poly(ethylene oxide)-co-poly(propylene oxide)-co-poly(ethylene oxide) block copolymers were studied. Cure advancement of these systems was analyzed by differential scanning calorimetry. The experimental results show a delay of cure rate, which increases as copolymer content and PEO molar ratio in the block copolymer rise. Infrared spectroscopy shows that PEO block is mainly responsible of physical interactions between the hydroxyl groups of growing epoxy thermoset and ether bonds of block copolymer. These interactions are mainly responsible for the delaying of cure kinetics. The molar ratio between blocks also has a critical influence on the delaying of the cure rate. A mechanistic approach of cure kinetics allows us to relate the delay of cure as a consequence of block copolymer adding to physical interactions between components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Bussi P, Ishida H (1994) J Appl Polym Sci 53:441

    Article  CAS  Google Scholar 

  2. Chen D, Pascault JP, Sautereau H (1993) Polym Int 32:361

    Article  Google Scholar 

  3. Verchere D, Sautereau JP, Pascault JP (1990) J Appl Polym Sci 41:467

    Article  CAS  Google Scholar 

  4. Ritzenthaler S, Girard-Reydet E, Pascault JP (2000) Polymer 41:6375

    Article  CAS  Google Scholar 

  5. Barral L, Cano J, López J, López-Bueno I, Nogueira P, Abad MJ, Ramírez C (2000) Polymer 41:2657

    Article  CAS  Google Scholar 

  6. Su CC, Woo EM (1995) Polymer 36:2883

    Article  CAS  Google Scholar 

  7. Grubbs RB, Dean JM, Broz ME, Bates FS (2000) Macromolecules 33:9522

    Article  CAS  Google Scholar 

  8. Lipic PM, Bates FS, Hillmyer MA (1998) J Am Chem Soc 120:8963

    Article  CAS  Google Scholar 

  9. Hillmyer MA, Lipic PM, Hajduk DA, Almdal W, Bates FS (1997) J Am Chem Soc 119:2749

    Article  CAS  Google Scholar 

  10. Guo Q, Thomann R, Gronski W, Staneva R, Ivanova R, Stühn B (2003) Macromolecules 36:3635

    Article  CAS  Google Scholar 

  11. Ritzenthaler S, Court F, David L, Girard-Reydet E, Leibler L, Pascault JP (2002) Macromolecules 35:6245

    Article  CAS  Google Scholar 

  12. Ritzenthaler S, Court F, Girard-Reydet E, Leibler L, Pascault JP (2003) Macromolecules 36:118

    Article  CAS  Google Scholar 

  13. Ruzette AV, Leibler L (2005) Nature Materials 4:19

    Article  CAS  Google Scholar 

  14. Konosen H, Ruokolainen J, Torkkeli M, Serimaa R, Nyholm P, Ikkala O (2002) Macromol Chem Phys 203:388

    Article  Google Scholar 

  15. Mijovic J, Shen M, Sy JW, Mondragon I (2000) Macromolecules 33:5235

    Article  CAS  Google Scholar 

  16. Guo Q, Thomann R, Gronski W, Thurn-Albrecht T (2002) Macromolecules 35:3133

    Article  CAS  Google Scholar 

  17. Larrañaga M, Martín MD, Gabilondo N, Kortaberria G, Corcuera MA, Riccardi CC, Mondragon I (2004) Polym Int 53:1495

    Article  Google Scholar 

  18. Larrañaga M, Gabilondo N, Kortaberria G, Serrano E, Remiro PM, Riccardi CC, Mondragon I (2005) Polymer 46:7082

    Article  Google Scholar 

  19. Fox TG (1956) Bull Am Phys Soc 1:123

    CAS  Google Scholar 

  20. Martinez I, Martin MD, Eceiza A, Oyanguren P, Mondragon I (2000) Polymer 41:1027

    Article  CAS  Google Scholar 

  21. Remiro PM, Riccardi CC, Corcuera MA, Mondragon I (1999) J Appl Polym Sci 74:772

    Article  CAS  Google Scholar 

  22. Jenninger W, Schawe JEW, Alig I (2000) Polymer 41:157

    Article  Google Scholar 

  23. Guo Q, Harrats C, Groeninckx G, Koch MHJ (2001) Polymer 42:4127

    Article  CAS  Google Scholar 

  24. Rocco AM, Moreira DP, Pereira RP (2003) Eur Polym J 39:1925

    Article  CAS  Google Scholar 

  25. Luo X, Zheng S, Zhang N, Ma D (1994) Polymer 35:2619

    Article  CAS  Google Scholar 

  26. Hu L, Lü H, Zheng S (2004) J Polym Sci Part B Polym Phys 42:2567

    Article  CAS  Google Scholar 

  27. Zheng H, Zheng S, Guo Q (1997) J Polym Sci Part B Polym Phys 35:3169

    Article  CAS  Google Scholar 

  28. Riccardi CC, Fraga F, Dupuy J, Williams RJJ (2001) J Appl Polym Sci 82:2319

    Article  CAS  Google Scholar 

  29. Gyrard-Reydet E, Riccardi CC, Sautereau H, Pascault JP (1995) Macromolecules 28:7599

    Article  Google Scholar 

Download references

Acknowledgements

Funding for this work was provided by Ministerio de Ciencia y Tecnología (Spain) grants MAT1998-0656, MAT2000-0293, and MAT2001-0714. M. Larrañaga acknowledges financial support (grant for Ph.D.) from the Ministerio de Ciencia y Tecnología. C. C. Riccardi also thanks Gobierno Vasco/Eusko Jaurlaritza for the financial support for a sabbatical year.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Mondragon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larrañaga, M., Martin, M.D., Gabilondo, N. et al. Toward microphase separation in epoxy systems containing PEO–PPO–PEO block copolymers by controlling cure conditions and molar ratios between blocks. Colloid Polym Sci 284, 1403–1410 (2006). https://doi.org/10.1007/s00396-006-1512-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-006-1512-9

Keywords

Navigation