Skip to main content
Log in

The formation of hydrophobic inorganic nanoparticles in the presence of amphiphilic copolymers

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The presented paper describes a novel procedure for the preparation of inorganic nanoparticles and their surface functionalization in situ dedicated to an application in technical polymers. Using an inverse emulsion technique and amphiphilic block or statistical copolymers as stabilizers, a broad variety of nanoparticles such as ZnO, CdS, MgCO3, Ni, or Cu can be prepared. The amphiphilic polymers serve not only as surface active compounds in the emulsion but also to hydrophobize the inorganic particles as they remain adsorbed on the surface after the precipitation. As a consequence of the high degree of surface coverage by polymer chains, organic solvents are able to redisperse these particles in the aggregate free manner. The utilization of the block copolymers instead of statistical copolymers resulted in the formation of the particles, which were larger in size and possessed a much broader size distribution. The chemical nature of the adsorbed polymer layer on the particle surface is crucial to the preparation of polymer nanocomposites. The primary goal of this contribution is to demonstrate the universality of such a one-pot synthetic procedure, which was found to be relevant for industrial use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Roy R, Komareni S, Roy D (1984) Mater Res Soc Symp Proc 32:347–348

    CAS  Google Scholar 

  2. Wen J, Wilkes GL (1996) Chem Mater 8:1667–1681

    Article  CAS  Google Scholar 

  3. Haas KH (2000) Adv Eng Mater 2:571–582

    Article  CAS  Google Scholar 

  4. Judenstein P, Sanchez C (1996) J Mater Chem 6:511–525

    Article  Google Scholar 

  5. Mulhaupt R (2004) Kunststoffe 34:76–88

    Google Scholar 

  6. Sanchez C, Lebeau B, Chaput F, Boilot JP (2003) Adv Mater 15:1969–1994

    Article  CAS  Google Scholar 

  7. Gangopadhyay R, De A (2000) Chem Mater 12:608–622

    Article  CAS  Google Scholar 

  8. Schottner G (2001) Chem Mater 13:3422–3435

    Article  CAS  Google Scholar 

  9. Kickelbick G (2003) Prog Polym Sci 28:83–114

    Article  CAS  Google Scholar 

  10. Vollath D, Szabo DV (2004) Adv Eng Mater 6:117–127

    Article  CAS  Google Scholar 

  11. Gomez-Romero P (2001) Adv Mater 13:163–174

    Article  CAS  Google Scholar 

  12. Huyhn WU, Peng X, Alivisatos P (1999) Adv Mater 11:923–927

    Article  Google Scholar 

  13. Lee J, Sundar VC, Heine JR, Bawendi MG, Jensen KF (2000) Adv Mater 12:1102–1105

    Article  CAS  Google Scholar 

  14. Alexandre M, Dubois P (2000) Mater Sci Eng 28:1–63

    Article  Google Scholar 

  15. Pileni MP (1993) J Phys Chem 97:6961–6973

    Article  CAS  Google Scholar 

  16. Pillai V, Kumar P, Hou MJ, Ayyub P, Shah DO (1995) Adv Coll Interface Sci 55:241–269

    Article  CAS  Google Scholar 

  17. Nagai K (1994) Macromol Symp 84:29–36

    CAS  Google Scholar 

  18. Caseri W (2000) Macromol Rapid Commun 21:705–722

    Article  CAS  Google Scholar 

  19. Holzinger D, Kickelbick G (2003) Chem Mater 15:4944–4948

    Article  CAS  Google Scholar 

  20. Schmidt H (2001) Appl Organomet Chem 15:331–343

    Article  CAS  Google Scholar 

  21. Willert M, Rothe R, Landfester KJ, Antonietti M (2001) Chem Mater 13:4681–4685

    Article  CAS  Google Scholar 

  22. Forster S, Antonietti M (1998) Adv Mater 10:195–217

    Article  Google Scholar 

  23. Prucker O, Ruhe J (1998) Macromolecules 31:592–601

    Article  CAS  Google Scholar 

  24. Ginger DS, Greenham NC (1999) Synth Met 101:425–428

    Article  CAS  Google Scholar 

  25. Wang Y, Herron N (1996) J Lumin 70:48–59

    Article  CAS  Google Scholar 

  26. Schwerzel RE, Spahr KB, Kurmer JP, Wood VE, Jenkins JA (1998) J Phys Chem 102:5622–5626

    CAS  Google Scholar 

  27. Huyhn WU, Dittmer JJ, Libby WC, Whitting GL, Alivisatos AP (2003) 13:73-79

  28. Pratsinis SE (1998) Prog Energy Combust Sci 24:197–219

    CAS  Google Scholar 

  29. Swihart MT (2003) Curr Opin Colloid Interface Sci 8:127–133

    Article  CAS  Google Scholar 

  30. Mueller R, Madler L, Pratsinis SE (2003) Chem Eng Sci 58:1969–1976

    Article  CAS  Google Scholar 

  31. Arriagadal FJ, Osseo-Asare K (1999) J Colloid Interface Sci 211:210–220

    Article  Google Scholar 

  32. Wormuth K (2001) J Colloid Interface Sci 241:366–377

    Article  CAS  Google Scholar 

  33. Alexandridis P, Hatton TA (1995) Colloids Surf A96:1–46

    Google Scholar 

  34. Khrenov V, Klapper M, Koch M, Mullen K (2005) Macromol Chem Phys 206:95–101

    Article  CAS  Google Scholar 

  35. Deporter C, Long T, McGrath (1994) Polym Int 33:205–216

    Article  CAS  Google Scholar 

  36. Butun V, Bennet CE, Vamvakaki M, Lowe AB, Billingham NC, Armes SP (1997) J Mater Chem 7:1693–1695

    Article  CAS  Google Scholar 

  37. Bachari EM, Amor SB, Baud G, Jacquet M (2001) Mater Sci Eng B79:165–174

    Article  CAS  Google Scholar 

  38. a) Alivisatos AP (1996) Science 271:933–937. b) Murray CB, Kagan CR, Bawendi MG (2000) Annu Rev Mater Sci 30:545–610. c) Weller H (1993) Adv Mater 5:88–95

    Article  CAS  Google Scholar 

  39. El-Tantawy F, Abdel-Kader KM, Kaneko F, Sung YK (2004) Eur Polym J 40:415–430

    Article  CAS  Google Scholar 

  40. Akimov IA, Denisyuk IY, Meshkov AM (2003) J Opt Technol 70:687–692

    CAS  Google Scholar 

  41. Zhang S, Horrocks AR (2003) Prog Polym Sci 28:1517–1538

    Article  CAS  Google Scholar 

  42. Bourbigot S, Devaux E, Flambard X (2000) Polym Degrad Stab 75:397–402

    Article  Google Scholar 

  43. Zanetti M, Camino G, Mulhaupt R (2001) Polym Degrad Stab 74:413–417

    Article  CAS  Google Scholar 

  44. a) Faatz M, Grohn F, Wegner G (2005) Mater Sci Eng C25:153–159 b) Deelman JC (2003) Low-temperature formation of dolomite and magnesite, Compact Disc Publications, Geology series

    CAS  Google Scholar 

  45. Pu Z, Mark JE (1997) Chem Mater 9:2442–2447

    Article  CAS  Google Scholar 

  46. Eastman JA, Phillpot SR, Choi SUS, Keblinski P (2004) Annu Rev Mater Res 34:219–246

    Article  CAS  Google Scholar 

  47. Hindsen M (1999) Acta Dermatovenerol 204:5–22

    Google Scholar 

  48. Jerschow E, Hostynek JJ, Maibach HI (2001) Food Chem Toxicol 39:1095–1108

    Article  CAS  Google Scholar 

  49. Hostynek JJ, Hinz RS, Lorence CR, Price M, Guy RH (1993) Crit Rev Toxicol 23:171–235

    Article  CAS  Google Scholar 

  50. Hindsen M, Bruze M (1998) Acta Dermatovenereol 78:367–370

    CAS  Google Scholar 

  51. a) Koch M, Klapper M, Khrenov V, Mullen K, Verwendung von statistischen Copolymeren, German Patent 1002004004-209.8, 2004. b) Koch M, Klapper M, Khrenov V, Mullen K, ZnO-Nanopartikel, German Patent, 1002004004-210.1, 2004

Download references

Acknowledgement

The financial support of Merck KGaA is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Klapper or K. Müllen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khrenov, V., Schwager, F., Klapper, M. et al. The formation of hydrophobic inorganic nanoparticles in the presence of amphiphilic copolymers. Colloid Polym Sci 284, 927–934 (2006). https://doi.org/10.1007/s00396-006-1468-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-006-1468-9

Keywords

Navigation