Skip to main content
Log in

Interaction between sodium dodecyl sulfate (SDS) and polyvinylpyrrolidone (PVP) investigated with forward and reverse component addition protocols employing tensiometric, conductometric, microcalorimetric, electrokinetic, and DLS techniques

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The interaction between polyvinylpyrrolidone (PVP) and sodium dodecyl sulfate (SDS) after the procedure of addition of the surfactant to polymer and the reverse procedure of addition of polymer to SDS micelles has been studied by tensiometric, conductometric, and microcalorimetric methods. The results have been analyzed and correlated with reference to SDS interfacial adsorption, association, and binding to PVP. Two aggregation states of SDS in presence of PVP have been found. The enthalpies of formation of SDS aggregates/micelles and their binding to the polymer have been evaluated. The interaction of PVP with SDS at concentrations below its critical micellar concentration (CMC) and above have evidenced distinctions. The forward addition protocol (FAP, SDS addition to PVP) and reverse addition protocol (RAP, PVP addition to SDS) have shown similarities and differences. Electrokinetic measurements have evidenced the interacted (SDS–PVP) colloidal products to possess negative zeta potential in the range of −39 to −65 mV. The hydrodynamic diameters of the PVP–SDS dispersion obtained from DLS measurements have ranged between 60 and 160 nm. Both zeta potential and hydrodynamic diameter have depended on [SDS] showing a maximum for the former at twice the critical micellar concentration of SDS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. (a) Goddard ED (1986) Colloids Surf 19:255; (b )Goddard ED (2002) J Colloid Interface Sci 256:228 (c) Lee LT (1999) Curr Opin Colloid Interface Sci 41:705

    Article  CAS  Google Scholar 

  2. Brackman JC, Engberts JBFN (1993) Chem Soc Rev 22:85

    Article  CAS  Google Scholar 

  3. Linse P, Piculell I, Hansson P (1998) Polymer–surfactant systems. In: Kwak J C T (ed) Surfactant Science Series vol. 77. Marcel Dekker, New York, pp 183–238

    Google Scholar 

  4. Goddard ED (1993) Interaction of surfactants with polymers and proteins. Goddard ED Ananthapadmanabhan KP(eds) CRC Press, Boca Raton, FL

    Google Scholar 

  5. Hansson P, Lindman B (1996) Curr Opin Colloid Interface Sci 1:604

    Article  CAS  Google Scholar 

  6. Nagarajan R (1989) J Chem Phys 90:1980

    Article  CAS  Google Scholar 

  7. Nagarajan R (1981) Polym Prepr (Am Chem Soc Div Polym Chem) 22:33

    CAS  Google Scholar 

  8. Desai NN, Shah DO (1981) Polym Prepr (Am Chem Soc Polym Chem) 22:39

    CAS  Google Scholar 

  9. Lindman B, Thalberg K (1993) Interactions of surfactants with polymers and proteins. Goddard ED, Ananthapadmanabhan KP (eds) CRC Press, Boca Raton, FL

    Google Scholar 

  10. Chakraborty I, Moulik SP (2004) J Dispers Sci Technol 25:849

    Article  CAS  Google Scholar 

  11. Kovtyukhova NI, Buzaneva EV, Waraksa CC, Martin BR, Malloiik TE (2000) Chem Mater 12:383

    Article  CAS  Google Scholar 

  12. Carlson A, Karlstrom G, Lindman B (1990) Colloids Surf 47:147

    Article  Google Scholar 

  13. Thuresson K, Soderman O, Hansson P, Wang G (1996) J Phys Chem 100:4909

    Article  CAS  Google Scholar 

  14. Hayakawa K, Kwak JCT (1991) Cationic surfactants: physical chemistry Rubingh DN, Holland PM (eds) Surfactant science series 37. Marcel Dekker, New York, p 189

    Google Scholar 

  15. (a) Wang G, Oloffson G (1998) J Phys Chem B 102:9276; (b) Dhara D, Shah DO, (2001) J Phys Chem B 105:7133

    Article  CAS  Google Scholar 

  16. (a) Wang G, Oloffson G (1995) J Phys Chem 99:5588 (b) da Silva RC, Loh W, Oloffson G (2004) Thermochim Acta 417:295

    Article  CAS  Google Scholar 

  17. (a) Burke S, Palepu R, Hait SK, Moulik SP (2003) Prog Colloid & Polym Sci 122:47; (b) Panmai S, Prud’homme RK, Peiffer DG (1999) Colloids Surf 147:3

    Article  CAS  Google Scholar 

  18. Holmberg C, Nilsson S, Singh SK, Sundelof L (1992) J Phys Chem 96:871

    Article  CAS  Google Scholar 

  19. Wang Y, Han B, Yan H, Kwak JCT (1997) Langmuir 13:3119

    Article  CAS  Google Scholar 

  20. Regismond STA, Winnik, FM (1996) Colloids Surf A 119:221

    Article  CAS  Google Scholar 

  21. Goldraich M, Schwartz JR, Burns JL, Talmon Y (1997) Colloids Surf 125:231

    Article  CAS  Google Scholar 

  22. Ninham BW, Evans DF (1986) Faraday Discuss Chem Soc 81:1

    Article  CAS  Google Scholar 

  23. Evans DF, Ninham BW (1986) J Phys Chem 90:226

    Article  CAS  Google Scholar 

  24. Wan-Badhi WA, Wan-Yunus WMZ, Bloor DM, Hall DG, Wyn-Jones E (1993) J Chem Soc Faraday Trans 89:2737

    Article  CAS  Google Scholar 

  25. Jones MN (1992) Chem Soc Rev 21:127

    Article  CAS  Google Scholar 

  26. Shinagawa S, Sato M, Kamuyama K, Takogi E (1994) Langmuir 10:1690

    Article  CAS  Google Scholar 

  27. Jones MN, MacFarlane AJB, Andrade MIP, Sarmiento F (1994) J Chem Soc Faraday Trans 90:2511

    Article  CAS  Google Scholar 

  28. Rapoza RJ, Horbett TA (1990) J Colloid Interface Sci 136:480

    Article  CAS  Google Scholar 

  29. Maulik S, Jana PK, Moulik SP, Chattoraj DK (1995) Biopoly 35:533

    Article  CAS  Google Scholar 

  30. Maulik S, Datta P, Chattoraj DK, Moulik SP (1998) Colloids Surf B: Biointerfaces 11:1

    Article  CAS  Google Scholar 

  31. Housaindokht MR, Moosavi-Novahedi AA, Moghadasi J, Jones MM (1993) Int J Biol Macromol 15:337

    Article  CAS  Google Scholar 

  32. Das M, Chattoraj DK (1991) Colloids Surf 61:1

    Article  CAS  Google Scholar 

  33. Cosgrove T, White SJ, Zarbakhsh A, Heenan RK, Howe AM (1995) Langmuir 11:744

    Article  CAS  Google Scholar 

  34. Ghosh S, Banerjee A (2002) Biomacromolecules 3:9

    Article  CAS  Google Scholar 

  35. Feitosa E, Brown W, Hansson P (1996) Macromolecules 29:2169

    Article  CAS  Google Scholar 

  36. (a) Chatterjee A, Moulik SP, Majhi PR, Sanyal SK (2002) Biophys Chemist 98:313; (b) Rafati AK, Bordbar AK, Gharibi M, Amini MK, Safarpour MA (2004) Bull Chem Soc Jpn 77:1111

    Article  CAS  Google Scholar 

  37. Mel’nikov SM, Sergeyev VG, Yoshikawa K (1995) J Am Chem Soc 117:2401

    Article  CAS  Google Scholar 

  38. Caracciolo G, Pozzi D, Caminiti R, Castellano AC (2003) Eur Phys J 10:331

    CAS  Google Scholar 

  39. Goddard ED (1986) Colloids Surf 19:255

    Article  CAS  Google Scholar 

  40. Rolde ID (1981) Anionic surfactants—physical chemistry of surfactants action. Lucassen-Reynders EH (ed) Surfactant science series 11. Marcel Dekker, New York

    Google Scholar 

  41. Chari K, Lenhart WC (1990) J Colloid Interface Sci 137:204 (and references therein)

    Article  CAS  Google Scholar 

  42. Chari K, Hossain TZ (1991) J Phys Chem 95:3302

    Article  CAS  Google Scholar 

  43. Majhi PR, Moulik SP, Rodgers MP, Burke SE, Palepu RM (1999) J Surf Sci Technol 3–4:166

    Google Scholar 

  44. Griffiths PC, Hirst N, Paul A, King SM, Heenan RK, Farley R (2004) Langmuir 20(16):6904

    Article  CAS  Google Scholar 

  45. Khanal A, Li Y, Takisawa N, Kawasaki N, Oishi Y, Nakashima K (2004) Langmuir 20(12):4809

    Article  CAS  Google Scholar 

  46. Couderc-Azouaui S, Sidhu J, Georgiou TK, Charalambous DC, Vamvakaki M, Patrickios CS, Bloor DM, Penfold J, Holzwarth JF, Wyn-Jones E (2004) Langmuir 20(15):6458

    Article  CAS  Google Scholar 

  47. Pozharski E, Mac Donald RC (2002) J Biophys 83:556

    CAS  Google Scholar 

  48. Prasad M, Moulik SP, MacDonald A, Palepu R (2004) J Phys Chem B 108:355

    Article  CAS  Google Scholar 

  49. (a) Hait SK, Rogers MP, Burke SE, Palepu R, Moulik SP (2001) J Phys Chem B 105:745;(b) Hait SK, Moulik SP, Palepu R (2002) Langmuir 18:2471

    Article  CAS  Google Scholar 

  50. Mel’nikov SM, Sergeyev VG, Yoshikawa K (1995) J Am Chem Soc 117:2401

    Article  CAS  Google Scholar 

  51. Ganguli M, Jayachandran KN, Maiti S (2004) J Am Chem Soc 126:26

    Article  CAS  Google Scholar 

  52. Cherezov V, Qiu H, Pector V, Vandenbranden M, Ruysschaert JM, Caffrey M (2002) J Biophys 82:3105

    CAS  Google Scholar 

  53. Debroy P, Banerjee M, Prasad M, Moulik SP, Roy S (2005) Org Lett 7:403

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was done in a collaborative project by utilizing a research grant from the St. Francis Xavier University, Canada to the Centre for Surface Science, Jadavpur University with a fellowship to Madhumita Prasad. SPM thanks Indian National Science Academy for a Senior Scientist position. RP acknowledges the funding from NSERC of Canada in the form of an operating grant. Thanks are due to Dr. Ashis Acharya for the zeta potential measurements. We thank Mr. B. P. Ghosh and Dr. M. Ghosh of the Ceramic Membrane division (Central Glass and Ceramic Research Institute, Kolkata, India) for DLS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Palepu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, M., Palepu, R. & Moulik, S.P. Interaction between sodium dodecyl sulfate (SDS) and polyvinylpyrrolidone (PVP) investigated with forward and reverse component addition protocols employing tensiometric, conductometric, microcalorimetric, electrokinetic, and DLS techniques. Colloid Polym Sci 284, 871–878 (2006). https://doi.org/10.1007/s00396-005-1453-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-005-1453-8

Keywords

Navigation