Skip to main content
Log in

Latex interpenetrating polymer networks of epoxidised natural rubber/poly(methyl methacrylate): an insight into the mechanism of epoxidation

  • Original Contribution
  • Polymer
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Composite latex particles consisting of epoxidised natural rubber (ENR) and poly(methyl methacrylate) (PMMA) were synthesised to obtain interpenetrating polymer networks. Among the ENR latices having 9 to 36 mol% epoxide, prepared by in situ reaction using performic acid, the ENR latex with 25 mol% epoxide was selected for prevulcanisation by sulphur or γ-radiation system. The swelling ratios of sheets cast from the sulphur-prevulcanised ENR (SPENR) latices decreased with increasing prevulcanisation time while those cast from the γ-radiation-prevulcanised ENR latices were also inversely proportional to the irradiation dose. By applying the phase transfer/bulk polymerisation/transmission electron microscopy (TEM) technique, a homogeneous network structure in each of the SPENR particles and also a relative dense network near the surface in γ-radiation (RV) ENR particle were noticed. When 10 to 30 wt% of MMA swollen in ENR particles was polymerised, the mesh structure was observed in each particle. The dense network near the RVENR particle surface might be used as additional evidence that the degree of epoxidation and, hence, the presence of swollen n-butyl acrylate in the outer zone were higher than in the internal region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Lu G, Li ZF, Li SD, Xie J (2002) J Appl Polym Sci 85:1736

    Google Scholar 

  2. Lee DY, Subramaniam N, Fellows CM, Gilbert RG (2002) J Polym Sci A Polym Chem 40:809

    Google Scholar 

  3. Varkey JT, Rao SS, Thomas S (1996) J Appl Polym Sci 62:2169

    Google Scholar 

  4. Claramma NM, Mathew NM (1997) J Appl Polym Sci 65:1913

    Google Scholar 

  5. Makuuchi K, Hagiwara M (1984) J Appl Polym Sci 29:965

    Google Scholar 

  6. Hill DJT, O’Donnell JH, Perera MSC, Pomery PJ, Smetser P (1995) J Appl Polym Sci 57:1155

    Google Scholar 

  7. Porter M, Rawi R, Rahim SA (1992) J Nat Rubber Res 7:85

    Google Scholar 

  8. Ho CC, Khew MC (1999) Langmuir 15:6208

    Google Scholar 

  9. Hamzah S, Gomez JB, Rama RPS (1987) J Nat Rubber Res 2:118

    Google Scholar 

  10. Cook S, Cudby PEF, Davies RT, Morris MD (1997) Rubber Chem Technol 70:549

    Google Scholar 

  11. Tangboriboonrat P, Lerthititrakul C (2002) Colloid Polym Sci 280:1097

    Google Scholar 

  12. Tangboriboonrat P, Tiyapiboonchaiya C (1999) J Appl Polym Sci 71:133

    Google Scholar 

  13. Tangboriboonrat P, Tanunchai T, Tiyapiboonchaiya C (1999) Plast Rubber Compos 25:357

    Google Scholar 

  14. Hourston DJ, Romaine J (1989) Eur Polym J 25:695

    Google Scholar 

  15. Hourston DJ, Romaine J (1990) J Appl Polym Sci 39:1587

    Google Scholar 

  16. Sperling LH, Mishra V (1996) Polym Adv Technol 7:197

    Google Scholar 

  17. Schneider M, Pith T, Lambla MJ (1996) J Appl Polym Sci 62:273

    Google Scholar 

  18. Hashim AS, Kohjiya S (1993) Kautsch Gummi Kunstst 46:208

    Google Scholar 

  19. Gelling IR, Morrison NJ (1985) Rubber Chem Technol 58:243

    Google Scholar 

  20. Kumar RN, Kong WC, Abubakar A (1999) J Coat Technol 71:79

    Google Scholar 

  21. Ratnam CT, Nasir M, Baharin A, Zaman K (2000) Polym Int 49:1693

    Google Scholar 

  22. Tangboriboonrat P, Rakdee C (2000) Plast Rubber Compos 29:258

    Google Scholar 

  23. Blackley DC (1987) Latices. In: Mark HF, Bikaks NM, Overberger CG (eds) Encyclopedia of polymer science and engineering, vol 8, 2nd edn. Wiley, p 647

  24. Perera MCS, Elix JA, Bradbury JH (1988) J Polym Sci A Polym Chem 26:637

    Google Scholar 

  25. Burfield DR, Lim KL, Law KS, Ng S (1984) Polymer 25:995

    Google Scholar 

  26. Sanguansap K, Suteewong T, Saendee P, Buranabunya U, Tangboriboonrat P (2005) Polymer 46:1373

    Google Scholar 

  27. Vernekar SP, Sabne MB, Patil SD, Patil AS, Idage SB, Avadhani CV, Sivaram S (1992) J Appl Polym Sci 44:2107

    Google Scholar 

  28. Blackley DC, Aisah AAN, Twaits R (1979) Plastics and rubber: materials and applications, May:77

  29. Brandrup J, Immergut EH (1975) Polymer handbook, 2nd edn. Wiley-Interscience, New York

    Google Scholar 

  30. Lua CM, Gomez JB, Subramanium A (1985) Proceedings of the international rubber conference, Kuala Lumpur, Malaysia, p 525

Download references

Acknowledgements

The authors gratefully acknowledge the Thailand Research Fund (TRF) for the financial support. Special thanks go to the Office of Atomic Energy for Peace (Thailand) for allowing us to use the 60Co γ-ray source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Tangboriboonrat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saendee, P., Tangboriboonrat, P. Latex interpenetrating polymer networks of epoxidised natural rubber/poly(methyl methacrylate): an insight into the mechanism of epoxidation. Colloid Polym Sci 284, 634–643 (2006). https://doi.org/10.1007/s00396-005-1437-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-005-1437-8

Keywords

Navigation