Skip to main content
Log in

Molecular modeling of matrix chain deformation in nanofiber filled composites

  • Original contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The effects of the oriented fiber filler particles on the microscopic properties of the matrix network chains were investigated by using nanofiber filler particles as reinforcing material. Monte Carlo Rotational Isomeric State simulations were carried out for filled poly(ethylene) (PE) networks to study the dependence of the conformational distribution functions of polymer chains and their elastomeric properties on filler loadings. We were especially interested how the excluded volume effect of the nanofiber particles and their orientation (specifically orientational anisotropy) in the matrix influence elastomeric properties of the network. Distribution functions of the end-to-end distances of polymer chains for both unfilled and filled networks were calculated. Effects of nanofiber reinforcements with varying fiber radii and fiber volume fractions were investigated. We have found that the presence of nanofibers significantly increase the non-Gaussian behavior of polymer chains in the composite. The anisotropic effects of the nanofibers on mechanical properties of polymeric composites were studied as a function of their relative orientation to the direction of deformation. The modulus (reduced nominal stress per unit strain) was calculated from the distribution of end-to-end distances of polymer chains using the Mark–Curro method. Relatively small amount of nanofibers was found to increase the normalized moduli of the composite. Our results are quite in satisfactory qualitative agreement with experimental data reported in the literature. This shows that computer simulations provide a powerful tool in predicting physical properties of composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lawrence E (1974) Mechanical properties of polymers and composites. Marcel Dekker, New York

    Google Scholar 

  2. Mark JE, Abou-Hussein R, Sen TZ, Kloczkowski A (2005) Polymer 46:8894

    Article  CAS  Google Scholar 

  3. Ahmed S, Jones FR (1990) J Mater Sci 25:4933

    Article  CAS  Google Scholar 

  4. Blanchard AF, Parkinson D (1952) Ind Eng Chem 44:799

    Article  CAS  Google Scholar 

  5. Bueche AM (1957) J Polym Sci 25:139

    Article  CAS  Google Scholar 

  6. Yamakawa H (1971) Modern theory of polymer solutions. Harper & Row, New York

    Google Scholar 

  7. Kloczkowski A, Sharaf MA, Mark JE (1993) Comput Polym Sci 3:39

    CAS  Google Scholar 

  8. Kloczkowski A, Sharaf MA, Mark JE (1994) Chem Eng Sci 49:2889

    Article  CAS  Google Scholar 

  9. Sharaf MA, Kloczkowski A, Mark JE (1994) Comput Polym Sci 4:29

    CAS  Google Scholar 

  10. Yuan QW, Kloczkowski A, Mark JE, Sharaf MA (1996) J Polym Sci B Polym Phys 34:1647

    Article  CAS  Google Scholar 

  11. Guth EJ (1945) Appl Phys 16:20

    Article  CAS  Google Scholar 

  12. Kraus G (1965) Reinforcement of elastomers. Wiley Interscience, New York

    Google Scholar 

  13. Kraus G (1971) Adv Polym Sci 8:155

    Article  CAS  Google Scholar 

  14. Medalia AI (1970) J Colloid Interface Sci 32:115

    Article  CAS  Google Scholar 

  15. Medalia AI (1987) Rubber Chem Technol 60:43

    Google Scholar 

  16. Porter M (1967) Rubber Chem Technol 40:100

    Google Scholar 

  17. Heinrich G, Kluppel M, Vilgis TA (2002) Curr Opin Solid State Mater Sci 6:195

    Article  CAS  Google Scholar 

  18. Heinrich G, Kluppel M (2002) Adv Polym Sci 160:1

    CAS  Google Scholar 

  19. Kluppel M (2003) Adv Polym Sci 164:1

    Google Scholar 

  20. Lin H, Erguney F, Mattice WL (2005) Polymer 46:6154

    Article  CAS  Google Scholar 

  21. Ozmusul MS, Picu CR, Sternstein SS, Kumar SK (2005) Macromolecules 38:4495

    Article  CAS  Google Scholar 

  22. Vacatello M (2003) Macromol Theory Simul 12:86

    Article  CAS  Google Scholar 

  23. Vacatello M (2004) Macromol Theory Simul 13:30

    Article  CAS  Google Scholar 

  24. Vacatello M (2001) Macromolecules 34:1946

    Article  CAS  Google Scholar 

  25. Sen TZ, Sharaf MA, Mark JE, Kloczkowski A (2005) Polymer 46:7301

    Article  CAS  Google Scholar 

  26. Mark JE, Curro JG (1983) J Chem Phys 79:5705

    Article  CAS  Google Scholar 

  27. Mark JE, Curro JG (1984) J Chem Phys 80:5262

    Article  CAS  Google Scholar 

  28. Sharaf MA, Kloczkowski A, Mark JE (2001) Comput Theor Polymer Sci 11:251

    Article  CAS  Google Scholar 

  29. Sharaf MA, Mark JE (2002) Polymer 43:643

    Article  CAS  Google Scholar 

  30. Flory P (1969) Statistical mechanics of chain molecules. Wiley Interscience, New York

    Google Scholar 

  31. Mark JE, Erman B (1988) Rubberlik elasticity. A molecular Primer. Wiley Interscience, New York

    Google Scholar 

  32. Heinrich G, Vilgis TA (1993) Macromolecules 26:1109

    Article  CAS  Google Scholar 

  33. Curro JG, Mark JE (1984) J Chem Phys 80:4521

    Article  CAS  Google Scholar 

  34. Kloczkowski A, Sen TZ, Sharaf MA (2005) Polymer 46:4373

    Article  CAS  Google Scholar 

  35. Lee LH (1969) J Polymer Eng Sci 9:213

    Article  CAS  Google Scholar 

  36. Wu D, Hui K, Chandler D (1992) J Chem Phys 96:835

    Article  CAS  Google Scholar 

Download references

Acknowledgements

KIJ and MAS gratefully acknowledge the financial support by The National Textile Center at Georgia Tech. It is also a pleasure to acknowledge the financial support provided by the National Science Foundation through Grants DMR-0314760 (Polymers Program, Division of Materials Research) to JEM and INT-9605191 and INT-0111334 (US-EGYPT International Programs) to JEM and MAS. MAS gratefully acknowledge the financial support provided by US-Egypt Science and Technology Joint Fund through grant MAN7-001-002. AK acknowledges the financial support provided by the NIH grant 1R01GM072014-01. We would like to thank the referee for very helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Kloczkowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharaf, M.A., Kloczkowski, A., Sen, T.Z. et al. Molecular modeling of matrix chain deformation in nanofiber filled composites. Colloid Polym Sci 284, 700–709 (2006). https://doi.org/10.1007/s00396-005-1435-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-005-1435-x

Keywords

Navigation