Skip to main content
Log in

Cure process and reaction-induced phase separation in a diepoxy–diamine/PMMA blend. Monitoring by steady-state fluorescence and FT-IR (near and medium range)

  • Original Contribution
  • Polymer
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Poly(methyl methacrylate), PMMA, was chosen as an additive for an epoxy system based on the cured product of (a) diglycidyl ether of bisphenol A labeled with 5-dimethylaminonaphthalene-1-(2-aminoethyl) sulfonamide and (b) 1,5-diamino-2-methylpentane. Fourier transformed infrared spectroscopy (near, FT-NIR, and medium, FT-MIR, ranges) and steady-state fluorescence spectroscopy were used to monitor the epoxy cure reaction and the induced phase separation. The PMMA seems to exert a change in the mechanism of the epoxy cure reaction by means of a slight enhancement of the secondary amino group reactivity. It has been demonstrated that following the fluorescence response of the dansyl chromophore chemically bonded to the epoxy component is a way to monitor the cure process in a general sense, not only accounting for the chemical changes but also being additionally possible to detect the reaction-induced phase separation at a molecular scale. The fluorescence results, in terms of the first moment of the emission band, point out that the dilution effect is affecting the physicochemical changes of the modified epoxy system quite more exclusively than the chemical changes. Finally, a semiempirical model to explain the behavior of the dansyl fluorescence during the curing of a PMMA/diepoxy–diamine blend showing a reaction-induced phase separation has been proposed. The proposed model allows estimating the composition of the phases after nearly complete cure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Pascault JP, Verdu J, Williams RJJ (2002) Thermosetting polymers. Marcel Dekker, New York

    Google Scholar 

  2. Hedrick JL, Yilgör I, Wilkes GL, McGrath JE (1985) Polym Bull 13(3):201–208

    Google Scholar 

  3. Pearson RA (1993) In: Riew CK, Kinloch AJ (eds) Toughened plastics I: science and engineering. Advances in Chemistry Series, vol 233. American Chemical Society, Washington, DC, pp 405–425

    Google Scholar 

  4. Hodgkin JH, Simon GP, Varley RJ (1998) Polym Adv Technol 9(1):3–10

    Google Scholar 

  5. Williams RJJ, Rozenberg BA, Pascault JP (1997) Adv Polym Sci 128:95–156

    Google Scholar 

  6. Girard-Reydet E, Vicard V, Pascault JP, Sautereau H (1997) J Appl Polym Sci 65(12):2433–2445

    Google Scholar 

  7. Verchére D, Pascault JP, Sautereau H, Moschiar SM, Riccardi CC, Williams RJJ (1991) J Appl Polym Sci 43(2):293–304

    Google Scholar 

  8. Kinloch AJ, Yuen ML, Jenkins SD (1994) J Mater Sci 29(14):3781–3790

    Google Scholar 

  9. Schauer E, Berglund L, Pena G, Marieta C, Mondragon I (2002) Polymer 43(4):1241–1248

    Google Scholar 

  10. Wilkinson SP, Ward TC, Mc Grath JE (1993) Polymer 34(4):870–884

    Google Scholar 

  11. Girrd-Reydet E, Sautereau H, PAscault JP (1999) Polymer 40(7):1677–1687

    Google Scholar 

  12. Mijović J, Andjelic S (1995) Macromolecules 28(8):2787–2796

    Google Scholar 

  13. Mijović J, Andjelic S, Kenny JM (1996) Polym Adv Technol 7(1):1–16

    Google Scholar 

  14. Kortaberria G, Arruti P, Gabilondo N, Mondragon I (2004) Eur Polym J 40(1):129–136

    Google Scholar 

  15. Mikes F, González-Benito J, Llido JB (2004) J Polym Sci Part B Polym Phys 42(1):64–78

    Google Scholar 

  16. Wang M, Yu Y, Wu X, Li S (2004) Polymer 45(4):1253–1259

    Google Scholar 

  17. González-Benito J, Esteban I (2005) Colloid Polym Sci 283(5):559–569

    Google Scholar 

  18. Poncet S, Boiteux G, Pascault JP, Sautereau H, Seytre G, Rogozinski J, Kranbuchi D (1999) Polymer 40(24):6811–6820

    Google Scholar 

  19. Bonnet A, Pascault JP, Sautereau H, Rogozinski J, Kranbuehl D (2000) Macromolecules 33(10):3833–3843

    Google Scholar 

  20. Loutfy RO (1981) Macromolecules 14(2):270–275

    Google Scholar 

  21. Paczkowski J, Neckers DC (1992) Macromolecules 25(2):548–553

    Google Scholar 

  22. Song JC, Sumug CSP (1993) Macromolecules 26(18):4818–4824

    Google Scholar 

  23. Song JC, Neckers DC (1996) Polym Eng Sci 36(3):394–402

    Google Scholar 

  24. Sun XD, Sung CSP (1996) Macromolecules 29(9):3198–3202

    Google Scholar 

  25. Strehmel B, Strehmel V, Younes M (1999) J Polym Sci Part B Polym Phys 37(13):1367–1386

    Google Scholar 

  26. Vatanparast R, Li S, Hakala K, Lemmetyinen H (2000) Macromolecules 33(2):438–443

    Google Scholar 

  27. Hakala K, Vatanparast R, Li S, Peinado C, Bosch P, Catalina F, Lemmetyinen H (2000) Macromolecules 33(16):5954–5959

    Google Scholar 

  28. Lenhart JL, van Zanten JH, Dunkers JP, Parnas RS (2000) Langmuir 16(21):8145–8152

    Google Scholar 

  29. Mikes F, Gonzalez-Benito F, Serrano B, Bravo J, Baselga J (2002) Polymer 43(16):4331–4339

    Google Scholar 

  30. González-Benito J, Mikeš F, Baselga J, Lemetyinemm H (2002) J Appl Polym Sci 86(12):2992–3000

    Google Scholar 

  31. Olmos D, Aznar AJ, Baselga J, González-Benito J (2003) J Colloid Interface Sci 267(1):117–126

    Google Scholar 

  32. Quirin JC, Torkelson JM (2003) Polymer 44(2):423–432

    Google Scholar 

  33. Olmos D, Aznar AJ, González-Benito J (2005) Polym Test 24(3):275–283

    Google Scholar 

  34. González-Benito J, Mikes F, Bravo J, Aznar AJ, Baselga J (2001) J Macromol Sci Phys B40(3–4):429–441

    Google Scholar 

  35. Li Y, Chan L, Tyer L, Moody RT, Himel CM, Hercules DM (1975) J Am Chem Soc 97(11):3118–3126

    Google Scholar 

  36. Ritzenthaler S, Girard-Reydet E, Pascault JP (2000) Polymer 41(16):6375–6386

    Google Scholar 

  37. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, New York

    Google Scholar 

  38. Poisson N, Lachenal G, Sautereau H (1996) Vibr Spectrosc 12(2):237–247

    Google Scholar 

  39. Fu JH, Schlup JR (1993) J Appl Polym Sci 49(2):219–227

    Google Scholar 

  40. Janarthanan V, Thyagarajan G (1992) Polymer 33(17):3593–3597

    Google Scholar 

  41. González-Benito J, Koenig JL (2002) Macromolecules 35(19):7361–7367

    Google Scholar 

  42. Ni Y, Zheng SX (2005) Polymer 46(15):5828–5839

    Google Scholar 

  43. Rastegar S, Mohammadi N, Bagheri R (2004) Colloid Polym Sci 283(2):145–153

    Google Scholar 

  44. Lacowicz JR (1999) Principles of fluorescence spectroscopy. Kluwer, Academic/Plenum, New York

    Google Scholar 

Download references

Acknowledgements

This work has been funded by the project GR/MAT/0499/2004 of the CAM (Spain). On the other hand, the authors acknowledge the Secretaría de Estado de Universidades e Investigación del Ministerio de Educación y Ciencia of Spain for supporting the short research stay of Dr. J. González-Benito at the Department of Materials (Engineering II) of the University of California, Santa Barbara. At the same time, we would like to thank Dr. E.J. Kramer and the University of California, Santa Barbara, for all the facilities supplied for the elaboration of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. González-Benito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olmos, D., González-Benito, J. Cure process and reaction-induced phase separation in a diepoxy–diamine/PMMA blend. Monitoring by steady-state fluorescence and FT-IR (near and medium range). Colloid Polym Sci 284, 654–667 (2006). https://doi.org/10.1007/s00396-005-1434-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-005-1434-y

Keywords

Navigation