Skip to main content
Log in

Synthesis and characterization of poly-α,β-[N-(2-hydroxyethyl)-L-aspartamide]-g-poly(glycolide) amphiphilic graft copolymers as potential drug carriers

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A series of biodegradable amphiphilic graft polymers were successfully synthesized by grafting poly(glycolide) (PGA) sequences onto a water-soluble poly-α,β-[N-(2-hydroxyethyl)-L-aspartamide] (PHEA) backbone. These novel graft polymers were synthesized by the ring-opening polymerization initiated by the macroinitiator PHEA bearing hydroxyl groups without adding any catalyst. The graft polymers were characterized by Fourier transform infrared spectroscopy (FTIR), 1H nuclear magnetic resonance spectroscopy (1H NMR), combined size-exclusion chromatography (SEC) and multiangle laser light scattering (MALLS) analysis, and differential scanning calorimetry (DSC). By controlling the feed ratio of the macroinitiator to the monomer, graft polymers with different branch lengths can be obtained. The degradation behaviors of the copolymers were studied. Based on the amphiphilicity of the graft copolymers, nanoparticle drug delivery systems were prepared by the direct dissolution method and the dialysis method, and the in vitro drug release behavior was investigated. Transmission electron microscopy (TEM) images demonstrated that these nanoparticles were regularly spherical in shape. The particle size and distribution of the nanoparticles were measured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang H, Dong JH, Qiu KY (1998) J Polym Sci A Polym Chem 36:695

    Article  CAS  Google Scholar 

  2. Jeong JH, Byun Y, Park TG (2003) J Biomater Sci Polym Ed 14:1

    Article  CAS  Google Scholar 

  3. Jong SJ, Eerdenbrugh B, Nostrum CF, Bosch JJK, Hennink WE (2001) J Control Release 71:261

    Article  Google Scholar 

  4. Rutot D, Duquesne E, Ydens I, Degée P, Dubois P (2001) Polym Degrad Stab 73:561

    Article  CAS  Google Scholar 

  5. Ohya Y, Maruhashi S, Ouchi T (1998) Macromolecules 31:4662

    Article  CAS  Google Scholar 

  6. Kim JY, Ha CS, Jo NJ (2002) Polym Int 51:1123

    Article  CAS  Google Scholar 

  7. Qu X, Wirsen A, Albertsson A (1999) J Appl Polym Sci 74:3193

    Article  CAS  Google Scholar 

  8. Li J, Xie WH, Cheng HN, Nickol RG, Wang PG (1999) Macromolecules 32:2789

    Article  CAS  Google Scholar 

  9. Teramoto Y, Yoshioka M, Shiraishi N, Nishio Y (2002) J Appl Polym Sci 84:2621

    Article  CAS  Google Scholar 

  10. Breitenbach A, Pistel KF, Kissel T (2000) Polymer 41:4781

    Article  CAS  Google Scholar 

  11. Breitenbach A, Li YX, Kissel T (2000) J Control Release 64:167

    Article  CAS  Google Scholar 

  12. Tasaka F, Ohya Y, Ouchi T (2001) Macromolecules 34:5494

    Article  CAS  Google Scholar 

  13. Shinoda H, Asou Y, Suetsugu A, Tanaka K (2003) Macromol Biosci 3:34

    Article  CAS  Google Scholar 

  14. Braunecker J, Baba M, Milroy GE, Cameron RE (2004) Int J Pharm 282:19

    Article  CAS  Google Scholar 

  15. Zhang L, Peng T, Cheng SX, Zhuo RX (2004) J Phys Chem B 108:7763

    Article  CAS  Google Scholar 

  16. Peng T, Cheng SX, Zhuo RX (2004) J Polym Sci A Polym Chem 42:1356

    Article  CAS  Google Scholar 

  17. Yang SR, Jeong JH, Park K, Kim JD (2003) Colloid Polym Sci 281:852

    Article  CAS  Google Scholar 

  18. Neri P, Antoni G, Benvenuti F, Cocola F, Gazzei G (1973) J Med Chem 16:893

    Article  CAS  Google Scholar 

  19. Giammona G, Carlisi B, Palazzo S (1987) J Polym Sci A Polym Chem 25:2813

    Article  CAS  Google Scholar 

  20. Neuse EW, Perlwitz AG, Schmitt S (1991) Die Angew Makromol Chem 192:35

    Article  CAS  Google Scholar 

  21. Torchilin VP (2001) J Control Release 73:137

    Article  CAS  Google Scholar 

  22. Lee JH, Jung SW, Kim IS, Jeong YI, Kim YH, Kim SH (2003) Int J Pharm 251:23

    Article  CAS  Google Scholar 

  23. Liu XM, Yang YY, Leong KW (2003) J Colloid Interface Sci 266:295

    Article  CAS  Google Scholar 

  24. Ge HX, Hu Y, Jiang XQ, Cheng DM, Yuan YY, Bi H, Yang CZ (2002) J Pharm Sci 91:1463

    Article  CAS  Google Scholar 

  25. Yan GP, Li H, Cheng SX, Bottle SE, Wang XG, Yew YK, Zhuo RX (2004) J Appl Polym Sci 92:3869

    Article  CAS  Google Scholar 

  26. Croy SR, Kwon GS (2004) J Control Release 95:161

    Article  CAS  Google Scholar 

  27. Lee ES, Shin HJ, Na K, Bae YH (2003) J Control Release 90:363

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the National Natural Science Foundation of China (20204010 and 20474046). One of the authors, Si-Xue Cheng, is grateful to the Ministry of Education of China for the financial support of “Trans-Century Training Programme Foundation for the Talents.” Special thanks are due to Ms. Qing-Rong Wang for the SEC–MALLS measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren-Xi Zhuo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, T., Su, J., Lin, G. et al. Synthesis and characterization of poly-α,β-[N-(2-hydroxyethyl)-L-aspartamide]-g-poly(glycolide) amphiphilic graft copolymers as potential drug carriers. Colloid Polym Sci 284, 834–842 (2006). https://doi.org/10.1007/s00396-005-1432-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-005-1432-0

Keywords

Navigation