Skip to main content
Log in

Studies on the self-assembly behavior of the amphiphilic block copolymer of PSt-b-PAA in apolar solvents with polar fluorescent probe

  • Original contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The block copolymer of polystyrene-b-poly(butyl acrylate) (PSt-b-PBA) with a well-defined structure was synthesized by atom transfer radical polymerization (ATRP); its structure was characterized, and the living polymerization was also validated by gel permeation chromatography, Fourier transform infrared, and 1H NMR measurements. Then, the amphiphilic block copolymer of polystyrene-b-poly(acrylic acid) (PSt-b-PAA) has been prepared by hydrolysis of PSt-b-PBA, and copolymers of PSt-b-PAA with longer PSt blocks and shorter PAA blocks were obtained by controlling the conditions of ATRP polymerization. The reversed micelle solution of PSt-b-PAA in toluene was prepared by using the single-solvent dissolving method, and the reverse micellization behavior of PSt-b-PAA in toluene was mainly investigated in this paper. The fluorescent probe technique was used by using polar fluorescence compound N-(1-Naphthyl)ethylenediamine dihydrochloride (NEAH) as a polar fluorescent probe to study the reverse micellization behavior of PSt-b-PAA. It was found that the reverse micellization behaviors of PSt-b-PAA in toluene can be clearly revealed by using NEAH as a polar fluorescence probe, and the critical micelle concentrations (cmcs) can be well displayed. The experimental results showed that the self-assembling behavior of PSt-b-PAA in toluene depends apparently on the microstructure of the macromolecules and is also influenced by the temperature. For the copolymers of PSt-b-PAA with the same length of hydrophobic PSt blocks, the copolymer with a longer hydrophilic block PAA has lower cmc, and at higher temperature, the copolymer has lower cmc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cameron NS, Corbierrre MK, Eisenberg A (1999) Can J Chem 77:1311

    Article  CAS  Google Scholar 

  2. Yu Y, Zhang L, Eisenberg A (1998) Macromolecules 31:1144

    Article  CAS  Google Scholar 

  3. Shen H, Eisenberg A (2000) Macromolecules 33:2561

    Article  CAS  Google Scholar 

  4. Zhang L, Eisenberg A (1996) J Am Chem Soc 118:316

    Google Scholar 

  5. Zhang L, Eisenberg A (1998) Polym Adv Technol 9:677

    Article  CAS  Google Scholar 

  6. Desbaumes L, Eisenberg A (1999) Langmuir 15:36

    Article  CAS  Google Scholar 

  7. Riess G (1999) Colloids Surf A 153:99

    Article  CAS  Google Scholar 

  8. Kwon GS, Kataoka K (1995) Adv Drug Deliv Rev 16:295

    Article  CAS  Google Scholar 

  9. Moffitt M, Eisenberg A (1997) Macromolecules 30:4363

    Article  CAS  Google Scholar 

  10. Forster S, Antonietti M (1998) Adv Mater 10:195

    Article  Google Scholar 

  11. Zhang L, Shen H, Eisenberg A (1997) Macromolecules 30:1001

    Article  CAS  Google Scholar 

  12. Zhang L, Eisenberg A (1995) J Sci 268:1728

    Article  CAS  Google Scholar 

  13. Astafieva I, Zhong X, Eisenberg A (1993) Macromolecules 26(26):7339

    Article  CAS  Google Scholar 

  14. Zhang L, Eisenberg A (1995) Science 268:721

    Article  Google Scholar 

  15. Wang XS, Winnik MA, Manners I (2002) Macromol Rapid Commun 23(3):210

    Article  CAS  Google Scholar 

  16. Kříž J, Mazař B, Pleštil J, Tuzar Z, Pospišil H, Doskočilová D (1998) Macromolecules 31:41

    Article  Google Scholar 

  17. Prochazka K, Martin TJ, Webber SE, Munk P (1996) Macromolecules 29:6526

    Article  CAS  Google Scholar 

  18. Vinogradov SV, Bronich TK, Kabanov AV (2001) Adv Drug Deliv Rev 54(1):135

    Article  Google Scholar 

  19. Bronich TK, Vinogradov SV, Kabanov AV (2001) Nano Lett 1(10):535

    Article  CAS  Google Scholar 

  20. Discher BM, Bermudez H, Hammer DA, Discher DE, Won YY, Bates FS (2002) J Phys Chem B 106(11):2848

    Article  CAS  Google Scholar 

  21. Discher BM, Hammer DA, Bates FS, Discher DE (2000) Curr Opin Colloid Interface Sci 5(1–2):125

    Article  CAS  Google Scholar 

  22. Wang XS, Winnik MA, Manners I (2002) Macromol Rapid Commun 23(3):210

    Article  CAS  Google Scholar 

  23. Moffitt M, Eisenberg A et al (1995) Chem Mater 7:1185

    Article  CAS  Google Scholar 

  24. Ruokolainen J, Mäkinen R, Torkkeli M et al. (1998) J Sci 280:557

    Article  CAS  Google Scholar 

  25. Ding J, Liu GJ (1997) Polymer 38:5497

    Article  CAS  Google Scholar 

  26. Jenekhe SA, Cheng XL (1998) J Sci 279:1903–1907

    Article  CAS  Google Scholar 

  27. Jenekhe SA, Cheng XL (1999) J Sci 283:372–375

    Article  CAS  Google Scholar 

  28. Khougaz K, Zhong XF, Eisenberg A (1996) Macromolecules 29:3937

    Article  CAS  Google Scholar 

  29. Tang ZZ, Gao BJ, He SX (2005) J North Univ China 26:37

    Google Scholar 

Download references

Acknowledgement

The authors are grateful to the Science Foundation of Shanxi Province of China for its financial support for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baojiao Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, B., Tang, Z. & He, S. Studies on the self-assembly behavior of the amphiphilic block copolymer of PSt-b-PAA in apolar solvents with polar fluorescent probe. Colloid Polym Sci 284, 710–717 (2006). https://doi.org/10.1007/s00396-005-1409-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-005-1409-z

Keywords

Navigation