Skip to main content
Log in

Polymorphic tin dioxide synthesis via sol–gel mineralization of ethyl–cyanoethyl cellulose lyotropic liquid crystals

  • Short communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The polymorphic tin dioxide (SnO2) was synthesized by calcinating the sol–gel mineralized hybrid of the tin source solution (SnCl4/ethanol/H2O) and the lyotropic liquid crystal of ethyl–cyanoethyl cellulose((E-CE)C)/acrylic acid (AA). The sub-micrometer SnO2 spheres with bimodal distribution at 370 and 860 nm were obtained after calcinating the hybrid at 400°C for 5 h. When the hybrid was exposed to ultraviolet first and then calcinated the flying-saucer-like SnO2 was formed. The exposure time was found to influence the morphology of the as-prepared SnO2. Except for the spherical and the flying-saucer-like SnO2, a small amount of well-developed polyhedral SnO2 was also observed in the as-prepared samples. On this basis, the lyotropic liquid crystal of (E-CE)C/AA afforded a novel route to obtain polymorphic SnO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

SnO2 :

Tin dioxide

(E-CE)C:

Ethyl-cyanoethyl cellulose

AA:

Acrylic acid

EUV:

Extreme ultraviolet

PS:

Polystyrene

PMMA:

Polymethylmethacrylate

MCF:

Macrocellular foam

FE-SEM:

Field emission scanning electron microscope

GB:

Gentle beam

UV:

Ultraviolet

WAXD:

Wide angle X-ray diffraction

References

  1. Wu NL, Tung Chien-Yueh (2004) J Am Ceram Soc 87:1741

    Article  CAS  Google Scholar 

  2. Schmidt-Winkel PS, Lukens WW, Zhao DY, Yang PD, Chmelka BF, Stucky GD (1999) J Am Chem Soc 121:254

    Article  CAS  Google Scholar 

  3. Chen FL, Liu ML (1999) Chem Commun 18:1829

    Article  Google Scholar 

  4. Ye C, Fang X, Wang Y et al (2004) Chem Lett 33:54

    Article  CAS  Google Scholar 

  5. Srivastava DN, Chappel S, Palchik O, Zaban A, Gedanken A (2002) Langmuir 18:4160

    Article  CAS  Google Scholar 

  6. Wang Y, Lee JY, Deivaraj TC (2004) J Phys Chem B 108:13589

    Article  CAS  Google Scholar 

  7. Nagai K, Nishimura H, Okuno T, Hibino T, Matsui R, Tao YZ et al (2004) Trans Mater Res Soc Jpn 29:943

    CAS  Google Scholar 

  8. Holmes JD, Johnston KP, Doty RC, Korgel BA (2000) Science 287:1471

    Article  PubMed  CAS  Google Scholar 

  9. Jiang X, Wang YL, Herricksb T, Xia YN J (2004) Mater Chem 14:695

    Article  CAS  Google Scholar 

  10. Zhang DF, Sun LD, Yin JL, Yan CH (2003) Adv Mater 17:1022

    Article  CAS  Google Scholar 

  11. Liu Y, Dong J, Liu ML (2004) Adv Mater 16:353

    Article  CAS  Google Scholar 

  12. Gu QC, Nagai K, Norimatsu T et al (2005) Chem Mater 17:1115

    Article  CAS  Google Scholar 

  13. Lytle JC, Yan HN, Ergang S, Smyrl WH, Stein A (2004) J Mater Chem 14:1616

    Article  CAS  Google Scholar 

  14. Scott RWJ, Yang SM, Coombs N, Ozin GA, Williams DE (2003) Adv Funct Mater 13:225

    Article  CAS  Google Scholar 

  15. Sasahara K, Hyodo T, Shimizu Y, Egashira M (2004) J Eur ceramic society 24:1961

    Article  CAS  Google Scholar 

  16. Gulliver EA, Garvey JW, Wark TA, Hampden-smith MJ, Datye A (1991) J Am Ceram Soc 74(5):1091

    Article  CAS  Google Scholar 

  17. Barringer EA, Bowen HK (1985) Langmuir 1:414

    Article  CAS  Google Scholar 

  18. Sondi I, Matijevic E (2001) J Colloid Interf Sci 238:208

    Article  CAS  Google Scholar 

  19. Libert S, Goia DV, Matijevic E (2003) Langmuir 19:10673

    Article  CAS  Google Scholar 

  20. Park J, Privman V, Matijevic E (2001) J Phys Chem B 105:11630

    Article  CAS  Google Scholar 

  21. Libert S, Gorshkov V, Privman V, Goia D, Matijevic E (2003) Adv Colloid and Interf Sci169:100–102

    Article  CAS  Google Scholar 

  22. Göltner CG, Henke S, Weissenberger MC, Antonietti M (1998) Angew Chem Int Ed 37:613

    Article  Google Scholar 

  23. Molvinger K, Quignard F, Brunel D, Boissière M, Devoisselle JM (2004) Chem Mater 16:336

    Article  CAS  Google Scholar 

  24. Lester CL, Smith SM, Closon CD (2003) Chem Mater 15:3376

    Article  CAS  Google Scholar 

  25. Huang Y, Chen MC, Li LS (1988) Acta Chim Sin (Chi) 46:367

    CAS  Google Scholar 

  26. Jiang SH, Huang Y (1993) J Appl Polym Sci 50:607

    Article  CAS  Google Scholar 

  27. Matijevic E (1981) Acc Chem Rec 14:22

    Article  CAS  Google Scholar 

  28. Nagai K, Norimatsu T, Izawa Y (2004) J Plasma Fusion Res (Jpn) 80:486

    Article  Google Scholar 

  29. Nagai K, Norimatsu T, Izawa Y (2004) Encyclopedia Nanosci and Nanotechnol 10:407

    Google Scholar 

  30. Nagai K, Norimatsu T, Izawa Y (2004) Fusion Sci Technol 45:79

    CAS  Google Scholar 

Download references

Acknowledgements

A part of this work was performed under the auspices of MEXT (Ministry of Education, Culture, Science and Technology, Japan) under contract on the subject “Leading Project for EUV lithography source development”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiji Nagai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, Q., Nagai, K., Nakai, M. et al. Polymorphic tin dioxide synthesis via sol–gel mineralization of ethyl–cyanoethyl cellulose lyotropic liquid crystals. Colloid Polym Sci 284, 429–434 (2006). https://doi.org/10.1007/s00396-005-1394-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-005-1394-2

Keywords

Navigation